-
Je něco špatně v tomto záznamu ?
Effect of arsenic and cyanobacterial co-exposure on pathological, haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss)
M. Palikova, I. Papezikova, R. Kopp, J. Mares, Z. Markova, S. Navratil, O. Adamovsky, J. Kohoutek, L. Navratil, L. Blaha,
Jazyk angličtina Země Švédsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- arsen farmakologie MeSH
- bakteriální infekce krev imunologie patologie MeSH
- erytrocytární znaky účinky léků MeSH
- fagocyty účinky léků imunologie MeSH
- karcinogeny farmakologie MeSH
- Microcystis * MeSH
- mikrocystiny farmakologie MeSH
- neutrofily účinky léků imunologie MeSH
- Oncorhynchus mykiss krev imunologie MeSH
- počet leukocytů MeSH
- sinice MeSH
- železo krev MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: Under environmental conditions, fish are simultaneously exposed to multiple stressors. This study provides new knowledge on the effects of controlled exposure to multiple stressors, namely cyanobacterial biomass and food contaminated with arsenic. METHODS: Rainbow trout were divided into six groups of 25 fish and exposed to different contaminant combinations for 30 days: 1) control group, 2) cyanobacterial biomass, 3 & 4) two groups exposed to arsenic at concentrations of 5 mg.kg(-1) and 50 mg.kg(-1) fish feed, and 5 & 6) two groups exposed to cyanobacterial biomass and arsenic combined. We then evaluated pathological, haematological and immunological parameters at 10, 20 and 30 days after exposure. RESULTS: Marked gross pathological findings were present in groups exposed to arsenic and arsenic/cyanobacteria after 30 days. A strong decrease in haemoglobin concentration was observed in all experimental groups receiving arsenic after 10 days exposure. Total leukocyte count increased markedly in fish exposed to cyanobacterial biomass, and to higher arsenic concentrations by the end of the experiment. Neutrophils decreased significantly at the end of exposure. Similarly, exposure to cyanobacteria and/or arsenic led to suppression of opsonised zymosan particle-induced neutrophil respiratory bursts. CONCLUSIONS: Our results demonstrate that the effects of exposure to toxic cyanobacterial biomass and arsenic on fish are enhanced when the contaminants are combined. In particular, long-term exposure led to disturbances in the white blood-cell count. Modulation of phagocytosis, which is the first line of defence against invading pathogens, suggests that the combined action leads to a decreased ability to control infection.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020033
- 003
- CZ-PrNML
- 005
- 20170511144212.0
- 007
- ta
- 008
- 160722s2015 sw f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)26757114
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sw
- 100 1_
- $a Palikova, Miroslava $u Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
- 245 10
- $a Effect of arsenic and cyanobacterial co-exposure on pathological, haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss) / $c M. Palikova, I. Papezikova, R. Kopp, J. Mares, Z. Markova, S. Navratil, O. Adamovsky, J. Kohoutek, L. Navratil, L. Blaha,
- 520 9_
- $a OBJECTIVES: Under environmental conditions, fish are simultaneously exposed to multiple stressors. This study provides new knowledge on the effects of controlled exposure to multiple stressors, namely cyanobacterial biomass and food contaminated with arsenic. METHODS: Rainbow trout were divided into six groups of 25 fish and exposed to different contaminant combinations for 30 days: 1) control group, 2) cyanobacterial biomass, 3 & 4) two groups exposed to arsenic at concentrations of 5 mg.kg(-1) and 50 mg.kg(-1) fish feed, and 5 & 6) two groups exposed to cyanobacterial biomass and arsenic combined. We then evaluated pathological, haematological and immunological parameters at 10, 20 and 30 days after exposure. RESULTS: Marked gross pathological findings were present in groups exposed to arsenic and arsenic/cyanobacteria after 30 days. A strong decrease in haemoglobin concentration was observed in all experimental groups receiving arsenic after 10 days exposure. Total leukocyte count increased markedly in fish exposed to cyanobacterial biomass, and to higher arsenic concentrations by the end of the experiment. Neutrophils decreased significantly at the end of exposure. Similarly, exposure to cyanobacteria and/or arsenic led to suppression of opsonised zymosan particle-induced neutrophil respiratory bursts. CONCLUSIONS: Our results demonstrate that the effects of exposure to toxic cyanobacterial biomass and arsenic on fish are enhanced when the contaminants are combined. In particular, long-term exposure led to disturbances in the white blood-cell count. Modulation of phagocytosis, which is the first line of defence against invading pathogens, suggests that the combined action leads to a decreased ability to control infection.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a arsen $x farmakologie $7 D001151
- 650 _2
- $a bakteriální infekce $x krev $x imunologie $x patologie $7 D001424
- 650 _2
- $a karcinogeny $x farmakologie $7 D002273
- 650 _2
- $a sinice $7 D000458
- 650 _2
- $a erytrocytární znaky $x účinky léků $7 D004909
- 650 _2
- $a železo $x krev $7 D007501
- 650 _2
- $a počet leukocytů $7 D007958
- 650 _2
- $a mikrocystiny $x farmakologie $7 D052998
- 650 12
- $a Microcystis $7 D046931
- 650 _2
- $a neutrofily $x účinky léků $x imunologie $7 D009504
- 650 _2
- $a Oncorhynchus mykiss $x krev $x imunologie $7 D017686
- 650 _2
- $a fagocyty $x účinky léků $x imunologie $7 D010586
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Papezikova, Ivana $u Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
- 700 1_
- $a Kopp, Radovan $u Department of Zoology, Fishery, Hydrobiology and Bee Keeping, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.
- 700 1_
- $a Mares, Jan $u Department of Zoology, Fishery, Hydrobiology and Bee Keeping, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.
- 700 1_
- $a Markova, Zdenka $u Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
- 700 1_
- $a Navratil, Stanislav $u Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
- 700 1_
- $a Adamovský, Ondřej $u RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science Brno, Masaryk University, Czech Republic. $7 xx0084398
- 700 1_
- $a Kohoutek, Jiří $u RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science Brno, Masaryk University, Czech Republic. $7 xx0081824
- 700 1_
- $a Navratil, Lukas $u Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
- 700 1_
- $a Blaha, Ludek $u RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science Brno, Masaryk University, Czech Republic.
- 773 0_
- $w MED00168352 $t Neuro endocrinology letters $x 0172-780X $g Roč. 36 Suppl 1, č. - (2015), s. 57-63
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26757114 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20170511144550 $b ABA008
- 999 __
- $a ok $b bmc $g 1154703 $s 944561
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 36 Suppl 1 $c - $d 57-63 $i 0172-780X $m Neuro-endocrinology letters $n Neuro-endocrinol. lett. $x MED00168352
- LZP __
- $a Pubmed-20160722