• Something wrong with this record ?

Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units

K. Svoboda, M. Hartman, M. Šyc, M. Pohořelý, P. Kameníková, M. Jeremiáš, T. Durda,

. 2016 ; 166 (-) : 499-511. [pub] 20151114

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027935
003      
CZ-PrNML
005      
20161025094813.0
007      
ta
008      
161005s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jenvman.2015.11.001 $2 doi
024    7_
$a 10.1016/j.jenvman.2015.11.001 $2 doi
035    __
$a (PubMed)26588812
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Svoboda, Karel $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic; Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic. Electronic address: svoboda@icpf.cas.cz.
245    10
$a Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units / $c K. Svoboda, M. Hartman, M. Šyc, M. Pohořelý, P. Kameníková, M. Jeremiáš, T. Durda,
520    9_
$a Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions.
650    _2
$a adsorpce $7 D000327
650    _2
$a katalýza $7 D002384
650    _2
$a uhlí $7 D003031
650    _2
$a popel uhelný $x chemie $7 D060729
650    _2
$a látky znečišťující životní prostředí $x analýza $x chemie $7 D004785
650    12
$a spalování odpadů $7 D017745
650    _2
$a rtuť $x analýza $x chemie $7 D008628
650    _2
$a oxidace-redukce $7 D010084
650    12
$a tuhý odpad $7 D062611
650    _2
$a sulfidy $x chemie $7 D013440
650    _2
$a síra $x chemie $7 D013455
650    _2
$a termodynamika $7 D013816
650    _2
$a nakládání s odpady $x metody $7 D018505
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Hartman, Miloslav $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
700    1_
$a Šyc, Michal $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
700    1_
$a Pohořelý, Michael $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
700    1_
$a Kameníková, Petra $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
700    1_
$a Jeremiáš, Michal $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
700    1_
$a Durda, Tomáš $u Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic.
773    0_
$w MED00002657 $t Journal of environmental management $x 1095-8630 $g Roč. 166, č. - (2016), s. 499-511
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26588812 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161025095227 $b ABA008
999    __
$a ok $b bmc $g 1166249 $s 952565
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 166 $c - $d 499-511 $e 20151114 $i 1095-8630 $m Journal of environmental management $n J Environ Manage $x MED00002657
LZP    __
$a Pubmed-20161005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...