• Something wrong with this record ?

Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation

P. Pathak, V. Dhawan, A. Magarkar, R. Danne, S. Govindarajan, S. Ghosh, F. Steiniger, P. Chaudhari, V. Gopal, A. Bunker, T. Róg, A. Fahr, M. Nagarsenker,

. 2016 ; 509 (1-2) : 149-58. [pub] 20160523

Language English Country Netherlands

Document type Journal Article

We have developed active targeting liposomes to deliver anticancer agents to ASGPR which will contribute to effective treatment of hepatocellular carcinoma. Active targeting is achieved through polymeric ligands on the liposome surface. The liposomes were prepared using reverse phase evaporation method and doxorubicin hydrocholoride, a model drug, was loaded using the ammonium sulphate gradient method. Liposomes loaded with DOX were found to have a particle size of 200nm with more than 90% entrapment efficiency. Systems were observed to release the drug in a sustained manner in acidic pH in vitro. Liposomes containing targeting ligands possessed greater and selective toxicity to ASGPR positive HepG2 cell lines due to specific ligand receptor interaction. Bio-distribution studies revealed that liposomes were concentrated in the liver even after 3h of administration, thus providing conclusive evidence of targeting potential for formulated nanosystems. Tumor regression studies indicated greater tumor suppression with targeted liposomes thereby establishing superiority of the liposomal system. In this work, we used a novel methodology to guide the determination of the optimal composition of the targeting liposomes: molecular dynamics (MD) simulation that aided our understanding of the behaviour of the ligand within the bilayer. This can be seen as a demonstration of the utility of this methodology as a rational design tool for active targeting liposome formulation.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17023952
003      
CZ-PrNML
005      
20170720123153.0
007      
ta
008      
170720s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ijpharm.2016.05.041 $2 doi
035    __
$a (PubMed)27231122
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Pathak, Pankaj $u Bombay College of Pharmacy, University of Mumbai, Mumbai 400098, India.
245    10
$a Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation / $c P. Pathak, V. Dhawan, A. Magarkar, R. Danne, S. Govindarajan, S. Ghosh, F. Steiniger, P. Chaudhari, V. Gopal, A. Bunker, T. Róg, A. Fahr, M. Nagarsenker,
520    9_
$a We have developed active targeting liposomes to deliver anticancer agents to ASGPR which will contribute to effective treatment of hepatocellular carcinoma. Active targeting is achieved through polymeric ligands on the liposome surface. The liposomes were prepared using reverse phase evaporation method and doxorubicin hydrocholoride, a model drug, was loaded using the ammonium sulphate gradient method. Liposomes loaded with DOX were found to have a particle size of 200nm with more than 90% entrapment efficiency. Systems were observed to release the drug in a sustained manner in acidic pH in vitro. Liposomes containing targeting ligands possessed greater and selective toxicity to ASGPR positive HepG2 cell lines due to specific ligand receptor interaction. Bio-distribution studies revealed that liposomes were concentrated in the liver even after 3h of administration, thus providing conclusive evidence of targeting potential for formulated nanosystems. Tumor regression studies indicated greater tumor suppression with targeted liposomes thereby establishing superiority of the liposomal system. In this work, we used a novel methodology to guide the determination of the optimal composition of the targeting liposomes: molecular dynamics (MD) simulation that aided our understanding of the behaviour of the ligand within the bilayer. This can be seen as a demonstration of the utility of this methodology as a rational design tool for active targeting liposome formulation.
650    _2
$a protinádorové látky $x aplikace a dávkování $x chemie $x metabolismus $7 D000970
650    _2
$a asialoglykoproteinový receptor $x metabolismus $7 D037263
650    _2
$a hepatocelulární karcinom $x farmakoterapie $x metabolismus $7 D006528
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a farmaceutická chemie $x metody $7 D002626
650    _2
$a cholesterol $x chemie $7 D002784
650    _2
$a doxorubicin $x aplikace a dávkování $x chemie $x metabolismus $7 D004317
650    _2
$a lékové transportní systémy $x metody $7 D016503
650    _2
$a galaktany $x chemie $7 D005685
650    _2
$a buňky Hep G2 $7 D056945
650    _2
$a lidé $7 D006801
650    _2
$a liposomy $x chemie $7 D008081
650    _2
$a játra $x účinky léků $x metabolismus $7 D008099
650    _2
$a nádory jater $x farmakoterapie $x metabolismus $7 D008113
650    _2
$a velikost částic $7 D010316
650    _2
$a polyethylenglykoly $x chemie $7 D011092
650    _2
$a tkáňová distribuce $7 D014018
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dhawan, Vivek $u Bombay College of Pharmacy, University of Mumbai, Mumbai 400098, India.
700    1_
$a Magarkar, Aniket $u Academy of the Sciences of the Czech Republic, Prague, Czech Republic; Centre for Drug Research, Division of Pharmaceutical Bioscience, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
700    1_
$a Danne, Reinis $u Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland.
700    1_
$a Govindarajan, Srinath $u Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India.
700    1_
$a Ghosh, Sandipto $u Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Kharghar, Mumbai 410210, India.
700    1_
$a Steiniger, Frank $u Center for Electron Microscopy of the Medical Faculty, Friedrich-Schiller-University Jena, Ziegelmühlenweg 1, D-07740 Jena, Germany.
700    1_
$a Chaudhari, Pradip $u Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Kharghar, Mumbai 410210, India.
700    1_
$a Gopal, Vijaya $u Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India.
700    1_
$a Bunker, Alex $u Centre for Drug Research, Division of Pharmaceutical Bioscience, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
700    1_
$a Róg, Tomasz $u Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland.
700    1_
$a Fahr, Alfred $u Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessing-str. 8, D-07743 Jena, Germany.
700    1_
$a Nagarsenker, Mangal $u Bombay College of Pharmacy, University of Mumbai, Mumbai 400098, India. Electronic address: mangal.nagarsenker@gmail.com.
773    0_
$w MED00002359 $t International journal of pharmaceutics $x 1873-3476 $g Roč. 509, č. 1-2 (2016), s. 149-58
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27231122 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170720123646 $b ABA008
999    __
$a ok $b bmc $g 1239633 $s 984865
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 509 $c 1-2 $d 149-58 $e 20160523 $i 1873-3476 $m International journal of pharmaceutics $n Int. j. pharm. $x MED00002359
LZP    __
$a Pubmed-20170720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...