-
Je něco špatně v tomto záznamu ?
FGF signaling refines Wnt gradients to regulate the patterning of taste papillae
M. Prochazkova, TJ. Häkkinen, J. Prochazka, F. Spoutil, AH. Jheon, Y. Ahn, R. Krumlauf, J. Jernvall, OD. Klein,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1953 do Před 6 měsíci
Open Access Digital Library
od 1953-03-01 do Před 6 měsíci
PubMed
28506989
DOI
10.1242/dev.148080
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- chuťové pohárky embryologie metabolismus MeSH
- fibroblastový růstový faktor 10 nedostatek genetika metabolismus MeSH
- intracelulární signální peptidy a proteiny nedostatek genetika metabolismus MeSH
- kostní morfogenetické proteiny genetika metabolismus MeSH
- membránové proteiny nedostatek genetika metabolismus MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- počítačová simulace MeSH
- proteiny hedgehog genetika metabolismus MeSH
- rozvržení tělního plánu genetika fyziologie MeSH
- signální dráha Wnt * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17030809
- 003
- CZ-PrNML
- 005
- 20171030121102.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/dev.148080 $2 doi
- 035 __
- $a (PubMed)28506989
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Prochazkova, Michaela $u Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA. Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic.
- 245 10
- $a FGF signaling refines Wnt gradients to regulate the patterning of taste papillae / $c M. Prochazkova, TJ. Häkkinen, J. Prochazka, F. Spoutil, AH. Jheon, Y. Ahn, R. Krumlauf, J. Jernvall, OD. Klein,
- 520 9_
- $a The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a rozvržení tělního plánu $x genetika $x fyziologie $7 D019521
- 650 _2
- $a kostní morfogenetické proteiny $x genetika $x metabolismus $7 D019485
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a fibroblastový růstový faktor 10 $x nedostatek $x genetika $x metabolismus $7 D051526
- 650 _2
- $a proteiny hedgehog $x genetika $x metabolismus $7 D053823
- 650 _2
- $a intracelulární signální peptidy a proteiny $x nedostatek $x genetika $x metabolismus $7 D047908
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a membránové proteiny $x nedostatek $x genetika $x metabolismus $7 D008565
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a myši transgenní $7 D008822
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a těhotenství $7 D011247
- 650 _2
- $a chuťové pohárky $x embryologie $x metabolismus $7 D013650
- 650 12
- $a signální dráha Wnt $7 D060449
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Häkkinen, Teemu J $u Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland.
- 700 1_
- $a Prochazka, Jan $u Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA. Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic.
- 700 1_
- $a Spoutil, Frantisek $u Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic.
- 700 1_
- $a Jheon, Andrew H $u Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA.
- 700 1_
- $a Ahn, Youngwook $u Stowers Institute for Medical Research, Kansas City, MO 64110, USA. $7 gn_A_00002517
- 700 1_
- $a Krumlauf, Robb $u Stowers Institute for Medical Research, Kansas City, MO 64110, USA. Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- 700 1_
- $a Jernvall, Jukka $u Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland jernvall@fastmail.fm ophir.klein@ucsf.edu.
- 700 1_
- $a Klein, Ophir D $u Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA jernvall@fastmail.fm ophir.klein@ucsf.edu. Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
- 773 0_
- $w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 144, č. 12 (2017), s. 2212-2221
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28506989 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171030121151 $b ABA008
- 999 __
- $a ok $b bmc $g 1254402 $s 991836
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 144 $c 12 $d 2212-2221 $e 20170515 $i 1477-9129 $m Development $n Development $x MED00001363
- LZP __
- $a Pubmed-20171025