-
Je něco špatně v tomto záznamu ?
Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis
V. Popovici, A. Křenek, E. Budinská,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2013
PubMed Central
od 2013
Europe PubMed Central
od 2013
ProQuest Central
od 2013
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2012-12-04
Open Access Digital Library
od 2013-01-01
CINAHL Plus with Full Text (EBSCOhost)
od 2013-01-01
Medline Complete (EBSCOhost)
od 2013-01-01
Health & Medicine (ProQuest)
od 2013
Wiley-Blackwell Open Access Titles
od 2001
ROAD: Directory of Open Access Scholarly Resources
od 2013
PubMed
28523274
DOI
10.1155/2017/3926498
Knihovny.cz E-zdroje
- MeSH
- individualizovaná medicína metody MeSH
- kolorektální nádory diagnóza genetika metabolismus MeSH
- lidé MeSH
- mutace genetika MeSH
- nádorové biomarkery genetika metabolismus MeSH
- protoonkogenní proteiny B-raf genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010548
- 003
- CZ-PrNML
- 005
- 20180404142112.0
- 007
- ta
- 008
- 180404s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2017/3926498 $2 doi
- 035 __
- $a (PubMed)28523274
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Popovici, Vlad $u Institute of Biostatistics and Analyses, Faculty of Medicine and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, Kamenice 5, 625 00 Brno, Czech Republic.
- 245 10
- $a Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis / $c V. Popovici, A. Křenek, E. Budinská,
- 520 9_
- $a A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.
- 650 _2
- $a nádorové biomarkery $x genetika $x metabolismus $7 D014408
- 650 _2
- $a kolorektální nádory $x diagnóza $x genetika $x metabolismus $7 D015179
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a individualizovaná medicína $x metody $7 D057285
- 650 _2
- $a protoonkogenní proteiny B-raf $x genetika $x metabolismus $7 D048493
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Křenek, Aleš $u Institute of Computer Science, Masarykova Univerzita, Šumavská 15, 602 00 Brno, Czech Republic.
- 700 1_
- $a Budinská, Eva $u Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, Kamenice 5, 625 00 Brno, Czech Republic.
- 773 0_
- $w MED00182164 $t BioMed research international $x 2314-6141 $g Roč. 2017, č. - (2017), s. 3926498
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28523274 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404142152 $b ABA008
- 999 __
- $a ok $b bmc $g 1288033 $s 1007360
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 2017 $c - $d 3926498 $e 20170424 $i 2314-6141 $m BioMed research international $n Biomed Res Int $x MED00182164
- LZP __
- $a Pubmed-20180404