Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis

V. Popovici, A. Křenek, E. Budinská,

. 2017 ; 2017 (-) : 3926498. [pub] 20170424

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010548

A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010548
003      
CZ-PrNML
005      
20180404142112.0
007      
ta
008      
180404s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2017/3926498 $2 doi
035    __
$a (PubMed)28523274
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Popovici, Vlad $u Institute of Biostatistics and Analyses, Faculty of Medicine and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, Kamenice 5, 625 00 Brno, Czech Republic.
245    10
$a Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis / $c V. Popovici, A. Křenek, E. Budinská,
520    9_
$a A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.
650    _2
$a nádorové biomarkery $x genetika $x metabolismus $7 D014408
650    _2
$a kolorektální nádory $x diagnóza $x genetika $x metabolismus $7 D015179
650    _2
$a lidé $7 D006801
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a individualizovaná medicína $x metody $7 D057285
650    _2
$a protoonkogenní proteiny B-raf $x genetika $x metabolismus $7 D048493
655    _2
$a časopisecké články $7 D016428
700    1_
$a Křenek, Aleš $u Institute of Computer Science, Masarykova Univerzita, Šumavská 15, 602 00 Brno, Czech Republic.
700    1_
$a Budinská, Eva $u Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, Kamenice 5, 625 00 Brno, Czech Republic.
773    0_
$w MED00182164 $t BioMed research international $x 2314-6141 $g Roč. 2017, č. - (2017), s. 3926498
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28523274 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142152 $b ABA008
999    __
$a ok $b bmc $g 1288033 $s 1007360
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 2017 $c - $d 3926498 $e 20170424 $i 2314-6141 $m BioMed research international $n Biomed Res Int $x MED00182164
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...