Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance

A. Braunová, L. Kostka, L. Sivák, L. Cuchalová, Z. Hvězdová, R. Laga, S. Filippov, P. Černoch, M. Pechar, O. Janoušková, M. Šírová, T. Etrych,

. 2017 ; 245 (-) : 41-51. [pub] 20161118

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NV16-28600A MZ0 CEP Register

New amphiphilic diblock polymer nanotherapeutics serving simultaneously as a drug delivery system and an inhibitor of multidrug resistance were designed, synthesized, and evaluated for their physico-chemical and biological characteristics. The amphiphilic character of the diblock polymer, containing a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide copolymer and a hydrophobic poly(propylene oxide) block (PPO), caused self-assembly into polymer micelles with an increased hydrodynamic radius (Rhof approximately 15nm) in aqueous solutions. Doxorubicin (Dox), as a cytostatic drug, was bound to the diblock polymer through a pH-sensitive hydrazone bond, enabling prolonged circulation in blood, the delivery of Dox into a solid tumor and the subsequent stimuli-sensitive controlled release within the tumor mass and tumor cells at a decreased pH. The applicability of micellar nanotherapeutics as drug carriers was confirmed by an in vivo evaluation using EL4 lymphoma-bearing C57BL/6 mice. We observed significantly higher accumulation of micellar conjugates in a solid tumor because of the EPR effect compared with similar polymer-drug conjugates that do not form micellar structures or with the parent free drug. In addition, highly increased anti-tumor efficacy of the micellar polymer nanotherapeutics, even at a sub-optimal dose, was observed. The presence of PPO in the structure of the diblock polymer ensured, during in vitro tests on human and mouse drug-sensitive and resistant cancer cell lines, the inhibition of P-glycoprotein, one of the most frequently expressed ATP-dependent efflux pump that causes multidrug resistance. In addition, we observed highly increased rate of the uptake of the diblock polymer nanotherapeutics within the cells. We suppose that combination of unique properties based on MDR inhibition, stimuli sensitiveness (pH sensitive activation of drug), improved pharmacokinetics and increased uptake into the cells made the described polymer micelle a good candidate for investigation as potential drug delivery system.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010928
003      
CZ-PrNML
005      
20180404142415.0
007      
ta
008      
180404s2017 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jconrel.2016.11.020 $2 doi
035    __
$a (PubMed)27871991
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Braunová, Alena $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
245    10
$a Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance / $c A. Braunová, L. Kostka, L. Sivák, L. Cuchalová, Z. Hvězdová, R. Laga, S. Filippov, P. Černoch, M. Pechar, O. Janoušková, M. Šírová, T. Etrych,
520    9_
$a New amphiphilic diblock polymer nanotherapeutics serving simultaneously as a drug delivery system and an inhibitor of multidrug resistance were designed, synthesized, and evaluated for their physico-chemical and biological characteristics. The amphiphilic character of the diblock polymer, containing a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide copolymer and a hydrophobic poly(propylene oxide) block (PPO), caused self-assembly into polymer micelles with an increased hydrodynamic radius (Rhof approximately 15nm) in aqueous solutions. Doxorubicin (Dox), as a cytostatic drug, was bound to the diblock polymer through a pH-sensitive hydrazone bond, enabling prolonged circulation in blood, the delivery of Dox into a solid tumor and the subsequent stimuli-sensitive controlled release within the tumor mass and tumor cells at a decreased pH. The applicability of micellar nanotherapeutics as drug carriers was confirmed by an in vivo evaluation using EL4 lymphoma-bearing C57BL/6 mice. We observed significantly higher accumulation of micellar conjugates in a solid tumor because of the EPR effect compared with similar polymer-drug conjugates that do not form micellar structures or with the parent free drug. In addition, highly increased anti-tumor efficacy of the micellar polymer nanotherapeutics, even at a sub-optimal dose, was observed. The presence of PPO in the structure of the diblock polymer ensured, during in vitro tests on human and mouse drug-sensitive and resistant cancer cell lines, the inhibition of P-glycoprotein, one of the most frequently expressed ATP-dependent efflux pump that causes multidrug resistance. In addition, we observed highly increased rate of the uptake of the diblock polymer nanotherapeutics within the cells. We suppose that combination of unique properties based on MDR inhibition, stimuli sensitiveness (pH sensitive activation of drug), improved pharmacokinetics and increased uptake into the cells made the described polymer micelle a good candidate for investigation as potential drug delivery system.
650    _2
$a akrylamidy $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D000178
650    _2
$a zvířata $7 D000818
650    _2
$a protinádorová antibiotika $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D000903
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a doxorubicin $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D004317
650    _2
$a nosiče léků $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D004337
650    _2
$a uvolňování léčiv $7 D065546
650    _2
$a mnohočetná léková rezistence $x účinky léků $7 D018432
650    _2
$a chemorezistence $x účinky léků $7 D019008
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    12
$a micely $7 D008823
650    _2
$a nádory $x farmakoterapie $x metabolismus $x patologie $7 D009369
650    _2
$a polymery $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D011108
650    _2
$a propylenglykoly $x aplikace a dávkování $x chemie $x farmakokinetika $x terapeutické užití $7 D011409
650    _2
$a tumor burden $x účinky léků $7 D047368
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kostka, Libor $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Sivák, Ladislav $u Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
700    1_
$a Cuchalová, Lucie $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Hvězdová, Zuzana $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Laga, Richard $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Filippov, Sergey $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Černoch, Peter $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Pechar, Michal $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Janoušková, Olga $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
700    1_
$a Šírová, Milada $u Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
700    1_
$a Etrych, Tomáš $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic. Electronic address: etrych@imc.cas.cz.
773    0_
$w MED00002621 $t Journal of controlled release official journal of the Controlled Release Society $x 1873-4995 $g Roč. 245, č. - (2017), s. 41-51
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27871991 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142454 $b ABA008
999    __
$a ok $b bmc $g 1288413 $s 1007740
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 245 $c - $d 41-51 $e 20161118 $i 1873-4995 $m Journal of controlled release $n J Controlled Release $x MED00002621
GRA    __
$a NV16-28600A $p MZ0
LZP    __
$a Pubmed-20180404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...