Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.
- MeSH
- doxorubicin farmakokinetika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nosiče léků * chemie MeSH
- polymery * chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Minimization of drug side effects is a hallmark of advanced targeted therapy. Herein we describe the synthesis of polysaccharide-based nanocapsules prepared from furcellaran and chitosan via layer-by-layer deposition using electrostatic interaction. Using doxorubicin as a model drug, prepared nanocapsules showed excellent drug loading properties and release influence by pH and stability. Targeted delivery of doxorubicin was achieved by nanocapsule surface modification using homing peptide (seq SMSIARLC). The synthesized nanocapsules possess excellent compatibility to eukaryotic organisms. In the case of nonmalignant cells (PNT1A and HEK-293), toxicity tests revealed the absences of DNA fragmentation, apoptosis, necrosis, and also disruption of erythrocyte membranes. In contrast, results from treatment of malignant cell lines (MDA-MB-231 and PC3) indicate good anticancer effects of synthesized bionanomaterial. Internalization studies revealed the nanocapsule's ability to enter the malignant cell lines by endocytosis and triggering the apoptosis. The occurrence of apoptosis is mostly connected to the presence of ROS and inability of DNA damage reparation. Additionally, the obtained results strongly indicate that peptide modification increases the speed of nanocapsule internalization into malignant cell lines while simultaneously nonmalignant cell lines are untouched by nanocapsules highlighting the strong selectivity of the peptide.
- MeSH
- algináty chemie MeSH
- antigeny CD31 metabolismus MeSH
- chitosan chemie MeSH
- doxorubicin aplikace a dávkování farmakokinetika MeSH
- HEK293 buňky MeSH
- hemolýza účinky léků MeSH
- koncentrace vodíkových iontů MeSH
- léky s prodlouženým účinkem * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanokapsle aplikace a dávkování chemie toxicita MeSH
- peptidy chemie metabolismus MeSH
- polyelektrolyty chemie MeSH
- rostlinné gumy chemie MeSH
- systémy cílené aplikace léků metody MeSH
- testy toxicity MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stimulus-sensitive polymer drug conjugates based on high molecular weight N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers carrying doxorubicin via a pH-dependent cleavable bond (pHPMA-Dox) were previously shown to be able to overcome multi-drug resistance. Nevertheless, a tumor type dependent differential response was observed. Although an improved and more selective tumor accumulation of pHPMA-Dox is generally achieved due to the enhanced permeability and retention (EPR) effect, little is known about the fate of these conjugates upon entering the tumor tissue, which could explain the different responses. In this study, we compared in vitro and in vivo accumulation and Dox-activation of pHPMA-Dox in three cancer cell line models (1411HP, A2780cis, HT29) and derived xenograft tumors using a near-infrared fluorescence-labeled pHPMA-Dox conjugate. Firstly, cytotoxicity assays using different pH conditions proved a stepwise, pH-dependent increase in cytotoxic activity and revealed comparable sensitivity among the cell lines. Using multispectral fluorescence microscopy, we were able to track the distribution of drug and polymeric carrier simultaneously on cellular and histological levels. Microscopic analyses of cell monolayers confirmed the assumed mechanism of cell internalization of the whole conjugate followed by intracellular cleavage and nuclear accumulation of Dox in all three cell lines. In contrast, intratumoral distribution and drug release in xenograft tumors were completely different and were associated with different tissue substructures and microenvironments analyzed by Azan- and Hypoxisense®-staining. In 1411HP tumors, large vessels and less hypoxic/acidic microenvironments were associated with a pattern resulting from consistent tissue distribution and cellular uptake as whole conjugate followed by intracellular drug release. In A2780cis tumors, an inconsistent pattern of distribution partly resulting from premature drug release was associated with a more hypoxic/acidic microenvironment, compacted tumor tissue with compressed vessels and specific pre-damaged tissue structures. A completely different distribution pattern was observed in HT29 tumors, resulting from high accumulation of polymer in abundant fibrotic structures, with small embedded vessels featuring this tumor type together with pronounced premature drug release due to the strongly hypoxic/acidic microenvironment. In conclusion, the pattern of intratumoral distribution and drug release strongly depends on the tumor substructure and microenvironment and may result in different degrees of therapeutic efficacy. This reflects the pronounced heterogeneity observed in the clinical application of nanomedicines and can be exploited for the future design of such conjugates.
- MeSH
- antitumorózní látky aplikace a dávkování chemie farmakokinetika MeSH
- buňky HT-29 MeSH
- doxorubicin aplikace a dávkování chemie farmakokinetika MeSH
- fluorescenční barviva chemie MeSH
- karbocyaniny chemie MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- methakryláty chemie MeSH
- molekulová hmotnost MeSH
- myši nahé MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nosiče léků aplikace a dávkování chemie farmakokinetika MeSH
- systémy cílené aplikace léků MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Here, we describe innovative synthesis of well-defined biocompatible N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer carriers and their drug conjugates with pirarubicin intended for controlled drug delivery and pH-triggered drug activation in tumor tissue. Polymer carrier synthesis was optimized to obtain well-defined linear HPMA-based polymer precursor with dispersity close to 1 and molar mass close to renal threshold with minimal synthesis steps. The developed synthesis enables preparation of tailored polymer nanomedicines with highly enhanced biological behavior in vivo, especially the biodistribution, urine elimination, tumor accumulation and anticancer activity. STATEMENT OF SIGNIFICANCE: The manuscript reports on novel synthesis and detailed physicochemical characterization and in vivo evaluation of well-defined biocompatible hydrophilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) and their drug conjugates with pirarubicin enabling controlled drug delivery and pH-triggered drug activation in tumor tissue. Polymer carrier synthesis was optimized to obtain well-defined linear HPMA-based polymer precursor with minimal synthesis steps using controlled polymerization. Compared to previously published HPMA-based polymer drug conjugates whose polymer carriers were prepared by classical route via free radical polymerization, the newly prepared polymer drug conjugates exhibited enhanced biological behavior in vivo, especially the prolonged blood circulation, urine elimination, tumor accumulation and excellent anticancer activity. We believe that the newly prepared well-defined polymer conjugates could significantly enhance tumor therapy in humans.
- MeSH
- akrylamidy chemická syntéza farmakokinetika terapeutické užití MeSH
- antitumorózní látky chemická syntéza farmakokinetika terapeutické užití MeSH
- doxorubicin analogy a deriváty chemická syntéza farmakokinetika terapeutické užití MeSH
- experimentální sarkom farmakoterapie MeSH
- kapronáty chemická syntéza farmakokinetika terapeutické užití MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanomedicína metody MeSH
- polymerizace MeSH
- systémy cílené aplikace léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
N-(2-Hydroxypropyl)methacrylamide copolymer conjugates of pirarubicin (THP), P-THP, accumulates selectively in solid tumor tissue by the enhanced permeability and retention (EPR) effect. Despite of high accumulation in solid tumors, some macromolecular antitumor agents show poor therapeutic outcome because of poor tissue diffusion into the tumor as well as obstructed tumor blood flow. Here, we confirmed that cellular uptake of P-THP was 25 times less than that of free THP at 1-4 h incubation time in vitro. The passage of P-THP through the confluent tight-monolayer cells junction was 12 times higher than free THP, and P-THP penetrated deeper into the tumor cell spheroid (1.3-1.7-fold) than free THP in 4 h. In addition, P-THP showed cytotoxicity comparable to that of free THP to tumor-cells in spheroid form, despite of 7 times lower cytotoxicity of P-THP to the monolayer cells to that of free THP in vitro. These results indicate that P-THP administration can exhibit deeper diffusion into the tumor cell spheroid than free THP. As a consequence, P-THP exhibits more efficient antitumor activity than free THP in vivo, which is also supported by better pharmacokinetics and tumor accumulation of P-THP than free THP.
- MeSH
- akrylamidy chemie MeSH
- antitumorózní látky aplikace a dávkování farmakokinetika MeSH
- buněčné sféroidy MeSH
- doxorubicin aplikace a dávkování analogy a deriváty farmakokinetika MeSH
- HCT116 buňky MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- nádory farmakoterapie patologie MeSH
- nosiče léků chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Herein, the biodegradable micelle-forming amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer conjugates with the anticancer drug doxorubicin (Dox) designed for enhanced tumor accumulation were investigated, and the influence of their stability in the bloodstream on biodistribution, namely, tumor uptake, and in vivo antitumor efficacy were evaluated in detail. Dox was attached to the polymer carrier by a hydrazone bond enabling pH-controlled drug release. While the polymer-drug conjugates were stable in a buffer at pH 7.4 (mimicking bloodstream environment), Dox was released in a buffer under mild acidic conditions modeling the tumor microenvironment or cells. The amphiphilic polymer carriers differed in the structure of hydrophobic cholesterol derivative moieties bound to the HPMA copolymers via a hydrolyzable hydrazone bond, exhibiting different rates of micellar structure disintegration at various pH values. Considerable dependence of the studied polymer-drug conjugate biodistribution on the stability of the micellar structure was observed in neutral, bloodstream-mimicking, environment, showing that a faster rate of the micelle disintegration in pH 7.4 increased the conjugate blood clearance, decreased tumor accumulation, and significantly reduced the tumor:blood and tumor:muscle ratios. Similarly, the final therapeutic outcome was strongly affected by the stability of the micellar structure because the most stable micellar conjugate showed an almost similar therapeutic outcome as the water-soluble, nondegradable, high-molecular-weight starlike HPMA copolymer-Dox conjugate, which was highly efficient in the treatment of solid tumors in mice. Based on the results, we conclude that the bloodstream stability of micellar polymer-anticancer drug conjugates, in addition to their low side toxicity, is a crucial parameter for their efficient solid tumor accumulation and high in vivo antitumor activity.
- MeSH
- antitumorózní látky chemie farmakokinetika terapeutické užití MeSH
- doxorubicin chemie farmakokinetika terapeutické užití MeSH
- hydrofobní a hydrofilní interakce MeSH
- koncentrace vodíkových iontů MeSH
- lymfom krev farmakoterapie MeSH
- micely MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nanoparticles (NPs) that form by self-assembly of amphiphilic poly(N-(2-hydroxypropyl)-methacrylamide) (pHPMA) copolymers bearing cholesterol side groups are potential drug carriers for solid tumor treatment. Here, we investigate their behavior in solutions of human serum albumin (HSA) in phosphate buffered saline. Mixed solutions of NPs, from polymer conjugates with or without the anticancer drug doxorubicin (Dox) bound to them, and HSA at concentrations up to the physiological value are characterized by synchrotron small-angle X-ray scattering and isothermal titration calorimetry. When Dox is absent, a small amount of HSA molecules bind to the cholesterol groups that form the core of the NPs by diffusing through the loose pHPMA shell or get caught in meshes formed by the pHPMA chains. These interactions are strongly hindered by the presence of Dox, which is distributed in the pHPMA shell, meaning that the delivery of Dox by the NPs in the human body is not affected by the presence of HSA.
- MeSH
- cholesterol chemie farmakokinetika MeSH
- doxorubicin chemie farmakokinetika MeSH
- kyseliny polymethakrylové chemie farmakokinetika MeSH
- lidé MeSH
- lidský sérový albumin chemie farmakokinetika MeSH
- nádory farmakoterapie metabolismus MeSH
- nanočástice chemie MeSH
- systémy cílené aplikace léků metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Here, we describe a novel polymer platform suitable for efficient diagnostics and potential theranostics based on
- MeSH
- doxorubicin aplikace a dávkování farmakokinetika MeSH
- experimentální nádory * diagnostické zobrazování farmakoterapie MeSH
- Jurkat buňky MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nosiče léků * chemie MeSH
- optické zobrazování * MeSH
- polymery * chemie MeSH
- pozitronová emisní tomografie * MeSH
- radionuklidy MeSH
- teranostická nanomedicína * MeSH
- tkáňová distribuce MeSH
- zirkonium MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
The tumor-specific targeting of cancerostatics using polymer drug carriers represents a potential strategy to achieve an effective treatment with reduced side toxicity. Synthetic water-soluble copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are carriers with tunable architecture and drug loading, tumor-specific accumulation of the drug, and its controlled release. We describe a combination treatment of murine EL4 T cell lymphoma with HPMA-based star conjugates (Mw250,000gmol-1) of doxorubicin (Dox) or docetaxel (Dtx) designed for enhanced tumor accumulation and combination therapy. Although the combination of linear conjugates (Mw=28,000gmol-1) containing Dox or Dtx resulted in an additive effect in the treatment of the lymphoma, the opposite was observed in the combination of two star conjugates with Dox or Dtx, as the star Dtx conjugate decreased the treatment efficacy of the star Dox conjugate. The Dtx conjugate alone was virtually ineffective in the reduction of tumor growth or survival time extension; thus, a curative effect could be solely attributed to the Dox-containing conjugate. When Dtx was delivered to the tumor on the same polymer carrier as Dox, the efficacy of the Dox-induced treatment was reduced to a lesser extent. No reduction was found when Dtx was delivered by a linear polymer or applied as a free drug. The phenomenon was strictly related to the enhanced permeability and retention (EPR) effect, as it was not observed in BCL1 leukemia, a model without EPR. The diminished treatment outcome in the combination therapy with the two star conjugates was underlined by the significantly decreased accumulation of Dox in the tumor. The use of the drug-free polymer carrier instead of the Dtx-containing star conjugate did not reduce the treatment efficacy of the Dox conjugate. Thus, the physicochemical characteristics of the polymer carrier designed for tumor-specific drug delivery systems control the activity of the respective drug, leading to changes within the tumor microenvironment that can determine ultimate efficacy of the combination therapy.
- MeSH
- akrylamidy chemie MeSH
- antitumorózní látky aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- doxorubicin aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie patologie MeSH
- nosiče léků chemie MeSH
- taxoidy aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
New amphiphilic diblock polymer nanotherapeutics serving simultaneously as a drug delivery system and an inhibitor of multidrug resistance were designed, synthesized, and evaluated for their physico-chemical and biological characteristics. The amphiphilic character of the diblock polymer, containing a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide copolymer and a hydrophobic poly(propylene oxide) block (PPO), caused self-assembly into polymer micelles with an increased hydrodynamic radius (Rhof approximately 15nm) in aqueous solutions. Doxorubicin (Dox), as a cytostatic drug, was bound to the diblock polymer through a pH-sensitive hydrazone bond, enabling prolonged circulation in blood, the delivery of Dox into a solid tumor and the subsequent stimuli-sensitive controlled release within the tumor mass and tumor cells at a decreased pH. The applicability of micellar nanotherapeutics as drug carriers was confirmed by an in vivo evaluation using EL4 lymphoma-bearing C57BL/6 mice. We observed significantly higher accumulation of micellar conjugates in a solid tumor because of the EPR effect compared with similar polymer-drug conjugates that do not form micellar structures or with the parent free drug. In addition, highly increased anti-tumor efficacy of the micellar polymer nanotherapeutics, even at a sub-optimal dose, was observed. The presence of PPO in the structure of the diblock polymer ensured, during in vitro tests on human and mouse drug-sensitive and resistant cancer cell lines, the inhibition of P-glycoprotein, one of the most frequently expressed ATP-dependent efflux pump that causes multidrug resistance. In addition, we observed highly increased rate of the uptake of the diblock polymer nanotherapeutics within the cells. We suppose that combination of unique properties based on MDR inhibition, stimuli sensitiveness (pH sensitive activation of drug), improved pharmacokinetics and increased uptake into the cells made the described polymer micelle a good candidate for investigation as potential drug delivery system.
- MeSH
- akrylamidy aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- antibiotika antitumorózní aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- chemorezistence účinky léků MeSH
- doxorubicin aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- micely * MeSH
- mnohočetná léková rezistence účinky léků MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- nosiče léků aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- polymery aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- propylenglykoly aplikace a dávkování chemie farmakokinetika terapeutické užití MeSH
- tumor burden účinky léků MeSH
- uvolňování léčiv MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH