-
Something wrong with this record ?
Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues
T. Tichá, J. Lochman, L. Činčalová, L. Luhová, M. Petřivalský,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Aldehyde Oxidoreductases antagonists & inhibitors chemistry metabolism MeSH
- Cysteine chemistry metabolism MeSH
- Nitric Oxide Donors pharmacology MeSH
- Nitrosation MeSH
- Nitric Oxide metabolism MeSH
- Oxidation-Reduction MeSH
- Hydrogen Peroxide pharmacology MeSH
- Protein Processing, Post-Translational MeSH
- Recombinant Proteins chemistry genetics metabolism MeSH
- Plant Proteins antagonists & inhibitors chemistry metabolism MeSH
- S-Nitrosoglutathione metabolism MeSH
- S-Nitrosothiols metabolism MeSH
- Signal Transduction MeSH
- Solanum lycopersicum genetics growth & development metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO- donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016266
- 003
- CZ-PrNML
- 005
- 20180515151252.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbrc.2017.10.090 $2 doi
- 035 __
- $a (PubMed)29061305
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tichá, Tereza $u Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- 245 10
- $a Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues / $c T. Tichá, J. Lochman, L. Činčalová, L. Luhová, M. Petřivalský,
- 520 9_
- $a Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO- donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode.
- 650 _2
- $a aldehydoxidoreduktasy $x antagonisté a inhibitory $x chemie $x metabolismus $7 D000445
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a cystein $x chemie $x metabolismus $7 D003545
- 650 _2
- $a peroxid vodíku $x farmakologie $7 D006861
- 650 _2
- $a Solanum lycopersicum $x genetika $x růst a vývoj $x metabolismus $7 D018551
- 650 _2
- $a oxid dusnatý $x metabolismus $7 D009569
- 650 _2
- $a donory oxidu dusnatého $x farmakologie $7 D020030
- 650 _2
- $a nitrosace $7 D015538
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a rostlinné proteiny $x antagonisté a inhibitory $x chemie $x metabolismus $7 D010940
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a rekombinantní proteiny $x chemie $x genetika $x metabolismus $7 D011994
- 650 _2
- $a S-nitrosoglutathion $x metabolismus $7 D026422
- 650 _2
- $a S-nitrosothioly $x metabolismus $7 D026403
- 650 _2
- $a signální transdukce $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lochman, Jan $u Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic.
- 700 1_
- $a Činčalová, Lucie $u Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- 700 1_
- $a Luhová, Lenka $u Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- 700 1_
- $a Petřivalský, Marek $u Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic. Electronic address: marek.petrivalsky@upol.cz.
- 773 0_
- $w MED00009307 $t Biochemical and biophysical research communications $x 1090-2104 $g Roč. 494, č. 1-2 (2017), s. 27-33
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29061305 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515151426 $b ABA008
- 999 __
- $a ok $b bmc $g 1299890 $s 1013106
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 494 $c 1-2 $d 27-33 $e 20171021 $i 1090-2104 $m Biochemical and biophysical research communications $n Biochem Biophys Res Commun $x MED00009307
- LZP __
- $a Pubmed-20180515