-
Je něco špatně v tomto záznamu ?
Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles
C. Ergen, F. Heymann, W. Al Rawashdeh, F. Gremse, M. Bartneck, U. Panzer, R. Pola, M. Pechar, G. Storm, N. Mohr, M. Barz, R. Zentel, F. Kiessling, C. Trautwein, T. Lammers, F. Tacke,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- cílená molekulární terapie metody MeSH
- liposomy chemie MeSH
- mikrobubliny terapeutické užití MeSH
- myeloidní buňky chemie cytologie MeSH
- myši nahé MeSH
- myši MeSH
- nanokapsle aplikace a dávkování chemie MeSH
- orgánová specificita MeSH
- polymery chemie MeSH
- testování materiálů MeSH
- tkáňová distribuce MeSH
- tobolky aplikace a dávkování chemie MeSH
- vnitřnosti chemie cytologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery.
Department of Medicine 3 University Hospital Aachen Aachen Germany
Department of Medicine 3 University Hospital Hamburg Eppendorf Hamburg Germany
Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague Czechia
Institute of Organic Chemistry Johannes Gutenberg University Mainz Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016913
- 003
- CZ-PrNML
- 005
- 20180523093326.0
- 007
- ta
- 008
- 180515s2017 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biomaterials.2016.11.009 $2 doi
- 035 __
- $a (PubMed)27855336
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Ergen, Can $u Department of Medicine III, University Hospital Aachen, Aachen, Germany.
- 245 10
- $a Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles / $c C. Ergen, F. Heymann, W. Al Rawashdeh, F. Gremse, M. Bartneck, U. Panzer, R. Pola, M. Pechar, G. Storm, N. Mohr, M. Barz, R. Zentel, F. Kiessling, C. Trautwein, T. Lammers, F. Tacke,
- 520 9_
- $a Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a tobolky $x aplikace a dávkování $x chemie $7 D002214
- 650 _2
- $a liposomy $x chemie $7 D008081
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši nahé $7 D008819
- 650 _2
- $a mikrobubliny $x terapeutické užití $7 D045423
- 650 _2
- $a cílená molekulární terapie $x metody $7 D058990
- 650 _2
- $a myeloidní buňky $x chemie $x cytologie $7 D022423
- 650 _2
- $a nanokapsle $x aplikace a dávkování $x chemie $7 D053769
- 650 _2
- $a orgánová specificita $7 D009928
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a tkáňová distribuce $7 D014018
- 650 _2
- $a vnitřnosti $x chemie $x cytologie $7 D014781
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Heymann, Felix $u Department of Medicine III, University Hospital Aachen, Aachen, Germany.
- 700 1_
- $a Al Rawashdeh, Wa'el $u Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
- 700 1_
- $a Gremse, Felix $u Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
- 700 1_
- $a Bartneck, Matthias $u Department of Medicine III, University Hospital Aachen, Aachen, Germany.
- 700 1_
- $a Panzer, Ulf $u Department of Medicine III, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
- 700 1_
- $a Pola, Robert $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
- 700 1_
- $a Pechar, Michal $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
- 700 1_
- $a Storm, Gert $u Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
- 700 1_
- $a Mohr, Nicole $u Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany.
- 700 1_
- $a Barz, Matthias $u Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany.
- 700 1_
- $a Zentel, Rudolf $u Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany.
- 700 1_
- $a Kiessling, Fabian $u Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
- 700 1_
- $a Trautwein, Christian $u Department of Medicine III, University Hospital Aachen, Aachen, Germany.
- 700 1_
- $a Lammers, Twan $u Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands. Electronic address: tlammers@ukaachen.de.
- 700 1_
- $a Tacke, Frank $u Department of Medicine III, University Hospital Aachen, Aachen, Germany. Electronic address: frank.tacke@gmx.net.
- 773 0_
- $w MED00000753 $t Biomaterials $x 1878-5905 $g Roč. 114, č. - (2017), s. 106-120
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27855336 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180523093510 $b ABA008
- 999 __
- $a ok $b bmc $g 1300537 $s 1013753
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 114 $c - $d 106-120 $e 20161109 $i 1878-5905 $m Biomaterials $n Biomaterials $x MED00000753
- LZP __
- $a Pubmed-20180515