• Something wrong with this record ?

Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach

H. Colinet, D. Renault, M. Javal, P. Berková, P. Šimek, V. Koštál,

. 2016 ; 1861 (11) : 1736-1745. [pub] 20160816

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

When exposed to constant low temperatures (CLTs), insects often suffer from cumulative physiological injuries that can severely compromise their fitness and survival. Yet, mortality can be considerably lowered when the cold stress period is interrupted by periodic warm interruption(s), referred to as fluctuating thermal regimes, FTRs. In this study, we have shown that FTRs strongly promoted cold tolerance of Drosophila melanogaster adults. We then assessed whether this marked phenotypic shift was associated with detectable physiological changes, such as synthesis of cryoprotectants and/or membrane remodeling. To test these hypotheses, we conducted two different time-series Omics analyzes in adult flies submitted to CLTs vs. FTRs: metabolomics (GC/MS) and lipidomics (LC/ESI/MS) targeting membrane phospholipids. We observed increasing levels in several polyhydric alcohols (arabitol, erythritol, sorbitol, mannitol, glycerol), sugars (fructose, mannose) and amino acids (serine, alanine, glutamine) in flies under CLT. Prolonged exposure to low temperature was also associated with a marked deviation of metabolic homeostasis and warm interruptions as short as 2h were sufficient to periodically return the metabolic system to functionality. Lipidomics revealed an increased relative proportion of phosphatidylethanolamines and a shortening of fatty acyl chains in flies exposed to cold, likely to compensate for the ordering effect of low temperature on membranes. We found a remarkable correspondence in the time-course of changes between the metabolic and phospholipids networks, both suggesting a fast homeostatic regeneration during warm intervals under FTRs. In consequence, we suggest that periodic opportunities to restore system-wide homeostasis contribute to promote cold tolerance under FTRs.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18017088
003      
CZ-PrNML
005      
20250402141036.0
007      
ta
008      
180515s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbalip.2016.08.008 $2 doi
035    __
$a (PubMed)27542540
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Colinet, Hervé $u Université de Rennes 1, UMR CNRS 6553 ECOBIO, 263 avenue du Général-Leclerc, 35042, Rennes, France. Electronic address: herve.colinet@univ-rennes1.fr.
245    10
$a Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach / $c H. Colinet, D. Renault, M. Javal, P. Berková, P. Šimek, V. Koštál,
520    9_
$a When exposed to constant low temperatures (CLTs), insects often suffer from cumulative physiological injuries that can severely compromise their fitness and survival. Yet, mortality can be considerably lowered when the cold stress period is interrupted by periodic warm interruption(s), referred to as fluctuating thermal regimes, FTRs. In this study, we have shown that FTRs strongly promoted cold tolerance of Drosophila melanogaster adults. We then assessed whether this marked phenotypic shift was associated with detectable physiological changes, such as synthesis of cryoprotectants and/or membrane remodeling. To test these hypotheses, we conducted two different time-series Omics analyzes in adult flies submitted to CLTs vs. FTRs: metabolomics (GC/MS) and lipidomics (LC/ESI/MS) targeting membrane phospholipids. We observed increasing levels in several polyhydric alcohols (arabitol, erythritol, sorbitol, mannitol, glycerol), sugars (fructose, mannose) and amino acids (serine, alanine, glutamine) in flies under CLT. Prolonged exposure to low temperature was also associated with a marked deviation of metabolic homeostasis and warm interruptions as short as 2h were sufficient to periodically return the metabolic system to functionality. Lipidomics revealed an increased relative proportion of phosphatidylethanolamines and a shortening of fatty acyl chains in flies exposed to cold, likely to compensate for the ordering effect of low temperature on membranes. We found a remarkable correspondence in the time-course of changes between the metabolic and phospholipids networks, both suggesting a fast homeostatic regeneration during warm intervals under FTRs. In consequence, we suggest that periodic opportunities to restore system-wide homeostasis contribute to promote cold tolerance under FTRs.
650    12
$a fyziologická adaptace $7 D000222
650    _2
$a zvířata $7 D000818
650    12
$a nízká teplota $7 D003080
650    _2
$a Drosophila melanogaster $x metabolismus $7 D004331
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a plynová chromatografie s hmotnostně spektrometrickou detekcí $7 D008401
650    _2
$a lineární modely $7 D016014
650    12
$a metabolismus lipidů $7 D050356
650    _2
$a metabolomika $x metody $7 D055432
650    _2
$a fosfolipidy $x metabolismus $7 D010743
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a pravděpodobnost $7 D011336
650    _2
$a hmotnostní spektrometrie s elektrosprejovou ionizací $7 D021241
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Renault, David $u Université de Rennes 1, UMR CNRS 6553 ECOBIO, 263 avenue du Général-Leclerc, 35042, Rennes, France.
700    1_
$a Javal, Marion $u URZF, INRA, 45075, Orléans, France.
700    1_
$a Berková, Petra $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic. $7 xx0330803
700    1_
$a Šimek, Petr $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
700    1_
$a Koštál, Vladimír $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1861, č. 11 (2016), s. 1736-1745
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27542540 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20250402141032 $b ABA008
999    __
$a ok $b bmc $g 1300712 $s 1013928
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 1861 $c 11 $d 1736-1745 $e 20160816 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20180515

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...