-
Je něco špatně v tomto záznamu ?
Live-Cell High Content Screening in Drug Development
M. Esner, F. Meyenhofer, M. Bickle,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy
- MeSH
- buněčné kultury MeSH
- kultivované buňky MeSH
- lidé MeSH
- mikroskopie MeSH
- molekulární zobrazování metody MeSH
- objevování léků * metody MeSH
- počítačové zpracování obrazu MeSH
- rychlé screeningové testy * MeSH
- software MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the past decade, automated microscopy has become an important tool for the drug discovery and development process. The establishment of imaging modalities as screening tools depended on technological breakthroughs in the domain of automated microscopy and automated image analysis. These types of assays are often referred to as high content screening or high content analysis (HCS/HCA). The driving force to adopt imaging for drug development is the quantity and quality of cellular information that can be collected and the enhanced physiological relevance of cellular screening compared to biochemical screening. Most imaging in drug development is performed on fixed cells as this allows uncoupling the preparation of the cells from the acquisition of the images. Live-cell imaging is technically challenging, but is very useful for many aspects of the drug development pipeline such as kinetic studies of compound mode of action or to analyze the motion of cellular components. Most vendors of HCS microscopy systems offer the option of environmental chambers and onboard pipetting on their platforms. This reflects the wish and desire of many customers to have the ability to perform live-cell assays on their HCS automated microscopes. This book chapter summarizes the challenges and advantages of live-cell imaging in drug discovery. Examples of applications are presented and the motivation to perform these assays in kinetic mode is discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024523
- 003
- CZ-PrNML
- 005
- 20180710092724.0
- 007
- ta
- 008
- 180709s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/978-1-4939-7357-6_10 $2 doi
- 035 __
- $a (PubMed)29082492
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Esner, Milan $u High Throughput Technology Development Studio (HT-TDS), Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany. Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic.
- 245 10
- $a Live-Cell High Content Screening in Drug Development / $c M. Esner, F. Meyenhofer, M. Bickle,
- 520 9_
- $a In the past decade, automated microscopy has become an important tool for the drug discovery and development process. The establishment of imaging modalities as screening tools depended on technological breakthroughs in the domain of automated microscopy and automated image analysis. These types of assays are often referred to as high content screening or high content analysis (HCS/HCA). The driving force to adopt imaging for drug development is the quantity and quality of cellular information that can be collected and the enhanced physiological relevance of cellular screening compared to biochemical screening. Most imaging in drug development is performed on fixed cells as this allows uncoupling the preparation of the cells from the acquisition of the images. Live-cell imaging is technically challenging, but is very useful for many aspects of the drug development pipeline such as kinetic studies of compound mode of action or to analyze the motion of cellular components. Most vendors of HCS microscopy systems offer the option of environmental chambers and onboard pipetting on their platforms. This reflects the wish and desire of many customers to have the ability to perform live-cell assays on their HCS automated microscopes. This book chapter summarizes the challenges and advantages of live-cell imaging in drug discovery. Examples of applications are presented and the motivation to perform these assays in kinetic mode is discussed.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčné kultury $7 D018929
- 650 _2
- $a kultivované buňky $7 D002478
- 650 12
- $a objevování léků $x metody $7 D055808
- 650 12
- $a rychlé screeningové testy $7 D057166
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a mikroskopie $7 D008853
- 650 _2
- $a molekulární zobrazování $x metody $7 D057054
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Meyenhofer, Felix $u High Throughput Technology Development Studio (HT-TDS), Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany. Département de Médecine, Faculté des Sciences, University of Fribourg, 1, Rte., Albert Gockel, Fribourg, 1700, Switzerland.
- 700 1_
- $a Bickle, Marc $u High Throughput Technology Development Studio (HT-TDS), Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany. bickle@mpi-cbg.de.
- 773 0_
- $w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 1683, č. - (2018), s. 149-164
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29082492 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180710093014 $b ABA008
- 999 __
- $a ok $b bmc $g 1316654 $s 1021444
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 1683 $c - $d 149-164 $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
- LZP __
- $a Pubmed-20180709