Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Excellent Diagnostic Characteristics for Ultrafast Gene Profiling of DEFA1-IL1B-LTF in Detection of Prosthetic Joint Infections

R. Fillerova, J. Gallo, M. Radvansky, V. Kraiczova, M. Kudelka, E. Kriegova,

. 2017 ; 55 (9) : 2686-2697. [pub] 20170621

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024911

Grantová podpora
NV15-27726A MZ0 CEP - Centrální evidence projektů
NV16-31852A MZ0 CEP - Centrální evidence projektů

The timely and exact diagnosis of prosthetic joint infection (PJI) is crucial for surgical decision-making. Intraoperatively, delivery of the result within an hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for the intraoperative exclusion of PJI; however, for patients with a limited amount of JF and/or in cases where the JF is bloody, this test is unhelpful. Important information is hidden in periprosthetic tissues that may much better reflect the current status of implant pathology. We therefore investigated the utility of the gene expression patterns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A) previously associated with infection for detection of PJI in periprosthetic tissues of patients with total joint arthroplasty (TJA) (n = 76) reoperated for PJI (n = 38) or aseptic failure (n = 38), using the ultrafast quantitative reverse transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-mining algorithms were applied for data analysis. For PJI, we detected elevated mRNA expression levels of DEFA1 (P < 0.0001), IL1B (P < 0.0001), LTF (P < 0.0001), TLR1 (P = 0.02), and BPI (P = 0.01) in comparison to those in tissues from aseptic cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and 95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3 and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene expression detection by use of ultrafast qRT-PCR linked to an electronic calculator allows detection of patients with a high probability of PJI within 45 min after sampling. Further testing on a larger cohort of patients is needed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024911
003      
CZ-PrNML
005      
20201019140609.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/JCM.00558-17 $2 doi
035    __
$a (PubMed)28637910
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Fillerova, Regina $u Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
245    10
$a Excellent Diagnostic Characteristics for Ultrafast Gene Profiling of DEFA1-IL1B-LTF in Detection of Prosthetic Joint Infections / $c R. Fillerova, J. Gallo, M. Radvansky, V. Kraiczova, M. Kudelka, E. Kriegova,
520    9_
$a The timely and exact diagnosis of prosthetic joint infection (PJI) is crucial for surgical decision-making. Intraoperatively, delivery of the result within an hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for the intraoperative exclusion of PJI; however, for patients with a limited amount of JF and/or in cases where the JF is bloody, this test is unhelpful. Important information is hidden in periprosthetic tissues that may much better reflect the current status of implant pathology. We therefore investigated the utility of the gene expression patterns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A) previously associated with infection for detection of PJI in periprosthetic tissues of patients with total joint arthroplasty (TJA) (n = 76) reoperated for PJI (n = 38) or aseptic failure (n = 38), using the ultrafast quantitative reverse transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-mining algorithms were applied for data analysis. For PJI, we detected elevated mRNA expression levels of DEFA1 (P < 0.0001), IL1B (P < 0.0001), LTF (P < 0.0001), TLR1 (P = 0.02), and BPI (P = 0.01) in comparison to those in tissues from aseptic cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and 95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3 and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene expression detection by use of ultrafast qRT-PCR linked to an electronic calculator allows detection of patients with a high probability of PJI within 45 min after sampling. Further testing on a larger cohort of patients is needed.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a náhrada kyčelního kloubu $x škodlivé účinky $7 D019644
650    _2
$a totální endoprotéza kolene $x škodlivé účinky $7 D019645
650    _2
$a biologické markery $x analýza $7 D015415
650    _2
$a karboxylesterhydrolasy $x analýza $7 D002265
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a lidé $7 D006801
650    _2
$a interleukin-1beta $x analýza $x genetika $7 D053583
650    _2
$a laktoferrin $x analýza $x genetika $7 D007781
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a polymerázová řetězová reakce $7 D016133
650    _2
$a infekce spojené s protézou $x diagnóza $x mikrobiologie $7 D016459
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a synoviální tekutina $x chemie $7 D013582
650    _2
$a alfa-defensiny $x analýza $x genetika $7 D023084
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gallo, Jiri $u Deptartment of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
700    1_
$a Radvansky, Martin $u Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Kraiczova, Veronika $u Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
700    1_
$a Kudelka, Milos $u Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Kriegova, Eva $u Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic eva.kriegova@email.cz.
773    0_
$w MED00002592 $t Journal of clinical microbiology $x 1098-660X $g Roč. 55, č. 9 (2017), s. 2686-2697
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28637910 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20201019140609 $b ABA008
999    __
$a ok $b bmc $g 1317042 $s 1021832
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 55 $c 9 $d 2686-2697 $e 20170621 $i 1098-660X $m Journal of clinical microbiology $n J Clin Microbiol $x MED00002592
GRA    __
$a NV15-27726A $p MZ0
GRA    __
$a NV16-31852A $p MZ0
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...