Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability

P. Martinková, D. Goldhaber, E. Erosheva,

. 2018 ; 13 (10) : e0203002. [pub] 20181005

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012298

Ratings are present in many areas of assessment including peer review of research proposals and journal articles, teacher observations, university admissions and selection of new hires. One feature present in any rating process with multiple raters is that different raters often assign different scores to the same assessee, with the potential for bias and inconsistencies related to rater or assessee covariates. This paper analyzes disparities in ratings of internal and external applicants to teaching positions using applicant data from Spokane Public Schools. We first test for biases in rating while accounting for measures of teacher applicant qualifications and quality. Then, we develop model-based inter-rater reliability (IRR) estimates that allow us to account for various sources of measurement error, the hierarchical structure of the data, and to test whether covariates, such as applicant status, moderate IRR. We find that applicants external to the district receive lower ratings for job applications compared to internal applicants. This gap in ratings remains significant even after including measures of qualifications and quality such as experience, state licensure scores, or estimated teacher value added. With model-based IRR, we further show that consistency between raters is significantly lower when rating external applicants. We conclude the paper by discussing policy implications and possible applications of our model-based IRR estimate for hiring and selection practices in and out of the teacher labor market.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012298
003      
CZ-PrNML
005      
20190409160223.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0203002 $2 doi
035    __
$a (PubMed)30289923
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Martinková, Patrícia $u Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic. Institute for Research and Development of Education, Faculty of Education, Charles University, Prague, Czech Republic.
245    10
$a Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability / $c P. Martinková, D. Goldhaber, E. Erosheva,
520    9_
$a Ratings are present in many areas of assessment including peer review of research proposals and journal articles, teacher observations, university admissions and selection of new hires. One feature present in any rating process with multiple raters is that different raters often assign different scores to the same assessee, with the potential for bias and inconsistencies related to rater or assessee covariates. This paper analyzes disparities in ratings of internal and external applicants to teaching positions using applicant data from Spokane Public Schools. We first test for biases in rating while accounting for measures of teacher applicant qualifications and quality. Then, we develop model-based inter-rater reliability (IRR) estimates that allow us to account for various sources of measurement error, the hierarchical structure of the data, and to test whether covariates, such as applicant status, moderate IRR. We find that applicants external to the district receive lower ratings for job applications compared to internal applicants. This gap in ratings remains significant even after including measures of qualifications and quality such as experience, state licensure scores, or estimated teacher value added. With model-based IRR, we further show that consistency between raters is significantly lower when rating external applicants. We conclude the paper by discussing policy implications and possible applications of our model-based IRR estimate for hiring and selection practices in and out of the teacher labor market.
650    _2
$a zkreslení výsledků (epidemiologie) $7 D015982
650    _2
$a zaměstnanost $x normy $7 D004651
650    _2
$a lidé $7 D006801
650    _2
$a učení $x fyziologie $7 D007858
650    _2
$a posudkové řízení $x normy $7 D010380
650    _2
$a výběr pracovníků $x normy $7 D010560
650    _2
$a veřejný sektor $7 D017150
650    _2
$a učitelé $x normy $7 D000070777
650    _2
$a školy $x normy $7 D012574
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Goldhaber, Dan $u Center for Education Data and Research, School of Social Work, and the Center for Statistics in the Social Sciences, University of Washington, Seattle, WA, United States of America.
700    1_
$a Erosheva, Elena $u Department of Statistics, School of Social Work, and the Center for Statistics in the Social Sciences, University of Washington, Seattle, WA, United States of America. Laboratoire J.A. Dieudonné, Université Côte d'Azur, CNRS, Nice, France.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 10 (2018), s. e0203002
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30289923 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190409160238 $b ABA008
999    __
$a ok $b bmc $g 1391608 $s 1050603
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 10 $d e0203002 $e 20181005 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...