Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations

M. Gajdoš, E. Výtvarová, J. Fousek, M. Lamoš, M. Mikl,

. 2018 ; 31 (5) : 767-779. [pub] 20180424

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012707
E-zdroje Online Plný text

NLK ProQuest Central od 1999-07-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2009-05-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1999-07-01 do Před 1 rokem
Psychology Database (ProQuest) od 1999-07-01 do Před 1 rokem

Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012707
003      
CZ-PrNML
005      
20190411093533.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10548-018-0647-6 $2 doi
035    __
$a (PubMed)29693205
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Gajdoš, Martin $u Multimodal and Functional Neuroimaging, CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
245    10
$a Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations / $c M. Gajdoš, E. Výtvarová, J. Fousek, M. Lamoš, M. Mikl,
520    9_
$a Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    12
$a atlasy jako téma $7 D001271
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a mapování mozku $x metody $7 D001931
650    _2
$a počítačová simulace $7 D003198
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a funkční lateralita $7 D007839
650    _2
$a zdraví dobrovolníci pro lékařské studie $7 D064368
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a individualita $7 D007206
650    _2
$a lineární modely $7 D016014
650    _2
$a magnetická rezonanční tomografie $x metody $x statistika a číselné údaje $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a světelná stimulace $7 D010775
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Výtvarová, Eva $u Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Fousek, Jan $u Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Lamoš, Martin $u Multimodal and Functional Neuroimaging, CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
700    1_
$a Mikl, Michal $u Multimodal and Functional Neuroimaging, CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. michal.mikl@ceitec.muni.cz.
773    0_
$w MED00007561 $t Brain topography $x 1573-6792 $g Roč. 31, č. 5 (2018), s. 767-779
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29693205 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190411093550 $b ABA008
999    __
$a ok $b bmc $g 1392017 $s 1051012
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 31 $c 5 $d 767-779 $e 20180424 $i 1573-6792 $m Brain topography $n Brain Topogr $x MED00007561
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...