Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Establishing pathological cut-offs for lateral ventricular volume expansion rates

MG. Dwyer, J. Hagemeier, N. Bergsland, D. Horakova, JR. Korn, N. Khan, T. Uher, J. Medin, D. Silva, M. Vaneckova, EK. Havrdova, R. Zivadinov,

. 2018 ; 18 (-) : 494-501. [pub] 20180207

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012786

Background: A percent brain volume change (PBVC) cut-off of -0.4% per year has been proposed to distinguish between pathological and physiological changes in multiple sclerosis (MS). Unfortunately, standardized PBVC measurement is not always feasible on scans acquired outside research studies or academic centers. Percent lateral ventricular volume change (PLVVC) is a strong surrogate measure of PBVC, and may be more feasible for atrophy assessment on real-world scans. However, the PLVVC rate corresponding to the established PBVC cut-off of -0.4% is unknown. Objective: To establish a pathological PLVVC expansion rate cut-off analogous to -0.4% PBVC. Methods: We used three complementary approaches. First, the original follow-up-length-weighted receiver operating characteristic (ROC) analysis method establishing whole brain atrophy rates was adapted to a longitudinal ventricular atrophy dataset of 177 relapsing-remitting MS (RRMS) patients and 48 healthy controls. Second, in the same dataset, SIENA PBVCs were used with non-linear regression to directly predict the PLVVC value corresponding to -0.4% PBVC. Third, in an unstandardized, real world dataset of 590 RRMS patients from 33 centers, the cut-off maximizing correspondence to PBVC was found. Finally, correspondences to clinical outcomes were evaluated in both datasets. Results: ROC analysis suggested a cut-off of 3.09% (AUC = 0.83, p < 0.001). Non-linear regression R2 was 0.71 (p < 0.001) and a - 0.4% PBVC corresponded to a PLVVC of 3.51%. A peak in accuracy in the real-world dataset was found at a 3.51% PLVVC cut-off. Accuracy of a 3.5% cut-off in predicting clinical progression was 0.62 (compared to 0.68 for PBVC). Conclusions: Ventricular expansion of between 3.09% and 3.51% on T2-FLAIR corresponds to the pathological whole brain atrophy rate of 0.4% for RRMS. A conservative cut-off of 3.5% performs comparably to PBVC for clinical outcomes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012786
003      
CZ-PrNML
005      
20190418082750.0
007      
ta
008      
190405s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.nicl.2018.02.009 $2 doi
035    __
$a (PubMed)29527505
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Dwyer, Michael G $u Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
245    10
$a Establishing pathological cut-offs for lateral ventricular volume expansion rates / $c MG. Dwyer, J. Hagemeier, N. Bergsland, D. Horakova, JR. Korn, N. Khan, T. Uher, J. Medin, D. Silva, M. Vaneckova, EK. Havrdova, R. Zivadinov,
520    9_
$a Background: A percent brain volume change (PBVC) cut-off of -0.4% per year has been proposed to distinguish between pathological and physiological changes in multiple sclerosis (MS). Unfortunately, standardized PBVC measurement is not always feasible on scans acquired outside research studies or academic centers. Percent lateral ventricular volume change (PLVVC) is a strong surrogate measure of PBVC, and may be more feasible for atrophy assessment on real-world scans. However, the PLVVC rate corresponding to the established PBVC cut-off of -0.4% is unknown. Objective: To establish a pathological PLVVC expansion rate cut-off analogous to -0.4% PBVC. Methods: We used three complementary approaches. First, the original follow-up-length-weighted receiver operating characteristic (ROC) analysis method establishing whole brain atrophy rates was adapted to a longitudinal ventricular atrophy dataset of 177 relapsing-remitting MS (RRMS) patients and 48 healthy controls. Second, in the same dataset, SIENA PBVCs were used with non-linear regression to directly predict the PLVVC value corresponding to -0.4% PBVC. Third, in an unstandardized, real world dataset of 590 RRMS patients from 33 centers, the cut-off maximizing correspondence to PBVC was found. Finally, correspondences to clinical outcomes were evaluated in both datasets. Results: ROC analysis suggested a cut-off of 3.09% (AUC = 0.83, p < 0.001). Non-linear regression R2 was 0.71 (p < 0.001) and a - 0.4% PBVC corresponded to a PLVVC of 3.51%. A peak in accuracy in the real-world dataset was found at a 3.51% PLVVC cut-off. Accuracy of a 3.5% cut-off in predicting clinical progression was 0.62 (compared to 0.68 for PBVC). Conclusions: Ventricular expansion of between 3.09% and 3.51% on T2-FLAIR corresponds to the pathological whole brain atrophy rate of 0.4% for RRMS. A conservative cut-off of 3.5% performs comparably to PBVC for clinical outcomes.
650    _2
$a dospělí $7 D000328
650    _2
$a databáze faktografické $x statistika a číselné údaje $7 D016208
650    _2
$a posuzování pracovní neschopnosti $7 D004185
650    _2
$a progrese nemoci $7 D018450
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a ventriculi laterales $x diagnostické zobrazování $x patologie $7 D020547
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a relabující-remitující roztroušená skleróza $x diagnostické zobrazování $x patologie $7 D020529
650    _2
$a nelineární dynamika $7 D017711
650    _2
$a ROC křivka $7 D012372
650    _2
$a referenční hodnoty $7 D012016
650    _2
$a stupeň závažnosti nemoci $7 D012720
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hagemeier, Jesper $u Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
700    1_
$a Bergsland, Niels $u Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
700    1_
$a Horakova, Dana $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
700    1_
$a Korn, Jonathan R $u QuintilesIMS, Burlington, MA, USA.
700    1_
$a Khan, Nasreen $u QuintilesIMS, Basel, Switzerland.
700    1_
$a Uher, Tomas $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
700    1_
$a Medin, Jennie $u Novartis Pharmaceuticals AG, Basel, Switzerland.
700    1_
$a Silva, Diego $u Novartis Pharmaceuticals AG, Basel, Switzerland.
700    1_
$a Vaneckova, Manuela $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
700    1_
$a Havrdova, Eva Kubala $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
700    1_
$a Zivadinov, Robert $u Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. Translational Imaging Center at Clinical and Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
773    0_
$w MED00188130 $t NeuroImage. Clinical $x 2213-1582 $g Roč. 18, č. - (2018), s. 494-501
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29527505 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190418082817 $b ABA008
999    __
$a ok $b bmc $g 1392096 $s 1051091
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 18 $c - $d 494-501 $e 20180207 $i 2213-1582 $m NeuroImage. Clinical $n Neuroimage Clin $x MED00188130
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...