-
Je něco špatně v tomto záznamu ?
Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach
D. Havelka, MA. Deriu, M. Cifra, O. Kučera,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
- MeSH
- aminokyseliny chemie metabolismus MeSH
- anizotropie MeSH
- konformace proteinů * MeSH
- mechanický stres MeSH
- mikrotubuly chemie metabolismus MeSH
- multimerizace proteinu MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- tubulin chemie metabolismus MeSH
- vibrace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.
Institute of Photonics and Electronics The Czech Academy of Sciences Prague Czechia
Istituto Dalle Molle di studi sull'Intelligenza Artificiale Manno Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013145
- 003
- CZ-PrNML
- 005
- 20190405092914.0
- 007
- ta
- 008
- 190405s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-017-04272-w $2 doi
- 035 __
- $a (PubMed)28652626
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Havelka, Daniel $u Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czechia.
- 245 10
- $a Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach / $c D. Havelka, MA. Deriu, M. Cifra, O. Kučera,
- 520 9_
- $a The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a aminokyseliny $x chemie $x metabolismus $7 D000596
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a anizotropie $7 D016880
- 650 _2
- $a mikrotubuly $x chemie $x metabolismus $7 D008870
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 12
- $a konformace proteinů $7 D011487
- 650 _2
- $a multimerizace proteinu $7 D055503
- 650 _2
- $a mechanický stres $7 D013314
- 650 _2
- $a tubulin $x chemie $x metabolismus $7 D014404
- 650 _2
- $a vibrace $7 D014732
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Deriu, Marco A $u Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Manno, Switzerland.
- 700 1_
- $a Cifra, Michal $u Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czechia.
- 700 1_
- $a Kučera, Ondřej $u Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czechia. kucerao@ibt.cas.cz. BIOCEV, Institute of Biotechnology, The Czech Academy of Sciences, Vestec, Czechia. kucerao@ibt.cas.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 4227
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28652626 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190405092923 $b ABA008
- 999 __
- $a ok $b bmc $g 1392455 $s 1051450
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 1 $d 4227 $e 20170626 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20190405