Detail
Article
Conference paper
FT
Medvik - BMC
  • Something wrong with this record ?

System for selecting relevant information for decision support

Jan Kalina, Libor Seidl, Karel Zvára, Hana Grünfeldová, Dalibor Slovák, Jana Zvárová

. 2013 ; () : 83-87.

Language English Country Netherlands

We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc19023189
003      
CZ-PrNML
005      
20240806143401.0
007      
ta
008      
190617s2013 ne f 100 0|eng||
009      
PC
024    7_
$a 10.3233/978-1-61499-240-0-83 $2 doi
035    __
$a (PubMed)23542973
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a ne
100    1_
$a Kalina, Jan, $d 1977- $7 xx0207698 $u European Center for Medical Informatics, Statistics and Epidemiology; Institute of Computer science of the Academy of Sciences of the Czech Republic
245    10
$a System for selecting relevant information for decision support / $c Jan Kalina, Libor Seidl, Karel Zvára, Hana Grünfeldová, Dalibor Slovák, Jana Zvárová
504    __
$a Literatura
520    9_
$a We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.
650    12
$a systémy pro podporu klinického rozhodování $7 D020000
650    _2
$a lidé $7 D006801
650    _2
$a kardiovaskulární nemoci $7 D002318
650    _2
$a internet $7 D020407
650    _2
$a software $7 D012984
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a uživatelské rozhraní počítače $7 D014584
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a umělá inteligence $7 D001185
700    1_
$a Seidl, Libor, $d 1978- $7 xx0134416 $u European Center for Medical Informatics, Statistics and Epidemiology; Charles University in Prague, First Faculty of Medicine
700    1_
$a Zvára, Karel, $d 1976- $7 xx0119049 $u European Center for Medical Informatics, Statistics and Epidemiology; Charles University in Prague, First Faculty of Medicine
700    1_
$a Grünfeldová, Hana $7 _BN004545 $u European Center for Medical Informatics, Statistics and Epidemiology; Municipal Hospital in Čáslav
700    1_
$a Slovák, Dalibor $7 xx0225345 $u European Center for Medical Informatics, Statistics and Epidemiology; Institute of Computer science of the Academy of Sciences of the Czech Republic; Charles University in Prague, First Faculty of Medicine
700    1_
$a Zvárová, Jana, $d 1943-2017 $7 nlk19990074087 $u European Center for Medical Informatics, Statistics and Epidemiology; Institute of Computer science of the Academy of Sciences of the Czech Republic; Charles University in Prague, First Faculty of Medicine
773    0_
$t Data and knowledge for medical decision support $z 978-1-61499-239-4 $g (2013), s. 83-87 $w MED00198580
773    0_
$t Studies in health technology and informatics $x 0926-9630 $g Roč. 186 (2013), s. 83-87 $w MED00180836
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23542973 $y Pubmed
910    __
$a ABA008 $b K 93449 $y 4 $z 0
990    __
$a 20190617095342 $b ABA008
991    __
$a 20240806143358 $b ABA008
999    __
$a ok $b bmc $g 1416295 $s 1061574
BAS    __
$a 5
BMC    __
$a 2013 $d 83-87 $m Data and knowledge for medical decision support $x MED00198580 $z 978-1-61499-239-4
BMC    __
$a 2013 $b 186 $d 83-87 $i 0926-9630 $m Studies in health technology and informatics $x MED00180836
LZP    __
$c NLK182 $d 20190708 $a NLK 2019-54/pk

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...