Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.)

B. Stratilová, Z. Firáková, J. Klaudiny, S. Šesták, S. Kozmon, D. Strouhalová, S. Garajová, F. Ait-Mohand, Á. Horváthová, V. Farkaš, E. Stratilová, M. Hrmova,

. 2019 ; 100 (1-2) : 181-197. [pub] 20190313

Language English Country Netherlands

Document type Journal Article

Grant support
2/0058/16 VEGA
DP120100900 Australian Research Council

E-resources Online Full text

NLK ProQuest Central from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 2010-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-01-01 to 1 year ago

KEY MESSAGE: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027717
003      
CZ-PrNML
005      
20190822110032.0
007      
ta
008      
190813s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11103-019-00852-8 $2 doi
035    __
$a (PubMed)30868545
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Stratilová, Barbora $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia. Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15, Bratislava, Slovakia.
245    10
$a Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.) / $c B. Stratilová, Z. Firáková, J. Klaudiny, S. Šesták, S. Kozmon, D. Strouhalová, S. Garajová, F. Ait-Mohand, Á. Horváthová, V. Farkaš, E. Stratilová, M. Hrmova,
520    9_
$a KEY MESSAGE: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a komplementární DNA $x genetika $7 D018076
650    _2
$a klíčení $7 D018525
650    _2
$a glykosylace $7 D006031
650    _2
$a glykosyltransferasy $x chemie $x metabolismus $7 D016695
650    _2
$a molekulární modely $7 D008958
650    _2
$a petržel (rod) $x enzymologie $7 D028528
650    _2
$a fylogeneze $7 D010802
650    _2
$a rostlinné proteiny $x chemie $x metabolismus $7 D010940
650    12
$a proteinové inženýrství $7 D015202
650    _2
$a semena rostlinná $x enzymologie $7 D012639
650    _2
$a strukturní homologie proteinů $7 D040681
650    _2
$a substrátová specifita $7 D013379
650    _2
$a Tropaeolum $x enzymologie $7 D032388
655    _2
$a časopisecké články $7 D016428
700    1_
$a Firáková, Zuzana $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Klaudiny, Jaroslav $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Šesták, Sergej $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Kozmon, Stanislav $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Strouhalová, Dana $u Institute of Analytical Chemistry, Czech Academy of Sciences, v.v.i. Veveří, 60200, Brno, Czech Republic.
700    1_
$a Garajová, Soňa $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Ait-Mohand, Fairouz $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Horváthová, Ágnes $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Farkaš, Vladimír $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Stratilová, Eva $u Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
700    1_
$a Hrmova, Maria $u School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China. maria.hrmova@adelaide.edu.au. School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia. maria.hrmova@adelaide.edu.au.
773    0_
$w MED00006562 $t Plant molecular biology $x 1573-5028 $g Roč. 100, č. 1-2 (2019), s. 181-197
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30868545 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190822110310 $b ABA008
999    __
$a ok $b bmc $g 1432866 $s 1066177
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 100 $c 1-2 $d 181-197 $e 20190313 $i 1573-5028 $m Plant molecular biology $n Plant Mol Biol $x MED00006562
GRA    __
$a 2/0058/16 $p VEGA
GRA    __
$a DP120100900 $p Australian Research Council
LZP    __
$a Pubmed-20190813

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...