-
Something wrong with this record ?
Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields
VVT. Padil, S. Wacławek, M. Černík, RS. Varma,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review
Grant support
EPA999999
Intramural EPA - United States
- MeSH
- Anti-Infective Agents chemistry metabolism MeSH
- Biodegradation, Environmental MeSH
- Biomedical Technology MeSH
- Biosensing Techniques MeSH
- Hydrogels metabolism MeSH
- Nanostructures MeSH
- Nanotechnology * MeSH
- Nanofibers chemistry MeSH
- Polysaccharides metabolism MeSH
- Prospective Studies MeSH
- Plant Exudates chemistry metabolism MeSH
- Plant Gums chemistry metabolism MeSH
- Trees chemistry metabolism MeSH
- Green Chemistry Technology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028243
- 003
- CZ-PrNML
- 005
- 20190820094812.0
- 007
- ta
- 008
- 190813s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biotechadv.2018.08.008 $2 doi
- 035 __
- $a (PubMed)30165173
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Padil, Vinod V T $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic. Electronic address: vinod.padil@tul.cz.
- 245 10
- $a Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields / $c VVT. Padil, S. Wacławek, M. Černík, RS. Varma,
- 520 9_
- $a The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
- 650 _2
- $a antiinfekční látky $x chemie $x metabolismus $7 D000890
- 650 _2
- $a biodegradace $7 D001673
- 650 _2
- $a biomedicínské technologie $7 D020811
- 650 _2
- $a biosenzitivní techniky $7 D015374
- 650 _2
- $a technologie zelené chemie $7 D055772
- 650 _2
- $a hydrogely $x metabolismus $7 D020100
- 650 _2
- $a nanovlákna $x chemie $7 D057139
- 650 _2
- $a nanostruktury $7 D049329
- 650 12
- $a nanotechnologie $7 D036103
- 650 _2
- $a rostlinné exsudáty $x chemie $x metabolismus $7 D053147
- 650 _2
- $a rostlinné gumy $x chemie $x metabolismus $7 D053149
- 650 _2
- $a polysacharidy $x metabolismus $7 D011134
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a stromy $x chemie $x metabolismus $7 D014197
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Wacławek, Stanisław $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
- 700 1_
- $a Černík, Miroslav $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic. Electronic address: miroslav.cernik@tul.cz.
- 700 1_
- $a Varma, Rajender S $u Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic. Electronic address: Varma.Rajender@epa.gov.
- 773 0_
- $w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 36, č. 7 (2018), s. 1984-2016
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30165173 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190820095048 $b ABA008
- 999 __
- $a ok $b bmc $g 1433392 $s 1066703
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 36 $c 7 $d 1984-2016 $e 20180827 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
- GRA __
- $a EPA999999 $p Intramural EPA $2 United States
- LZP __
- $a Pubmed-20190813