Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review
Grant support
EPA999999
Intramural EPA - United States
PubMed
30165173
PubMed Central
PMC6209323
DOI
10.1016/j.biotechadv.2018.08.008
PII: S0734-9750(18)30146-0
Knihovny.cz E-resources
- Keywords
- Antibacterial, Biomedical, Biosensors, Environmental bioremediation, Greener synthesis, Hydrogel, Nanoparticles and nanofibers, Tree gums,
- MeSH
- Anti-Infective Agents chemistry metabolism MeSH
- Biodegradation, Environmental MeSH
- Biomedical Technology MeSH
- Biosensing Techniques MeSH
- Hydrogels metabolism MeSH
- Nanostructures MeSH
- Nanotechnology * MeSH
- Nanofibers chemistry MeSH
- Polysaccharides metabolism MeSH
- Prospective Studies MeSH
- Plant Exudates chemistry metabolism MeSH
- Plant Gums chemistry metabolism MeSH
- Trees chemistry metabolism MeSH
- Green Chemistry Technology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Hydrogels MeSH
- Polysaccharides MeSH
- Plant Exudates MeSH
- Plant Gums MeSH
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
See more in PubMed
Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V, 2003. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 0, 70–71. PubMed
Aberkane L, Jasniewski J, Gaiani C, Hussain R, Scher J, Sanchez C, 2012. Structuration mechanism of β-lactoglobulin - acacia gum assemblies in presence of quercetin. Food Hydrocoll. 29, 9–20.
Adamson AW, Gast AP, 1997. Physical chemistry of surfaces, Sixth Edit ed. Wiley, New York, NY.
Aderibigbe BA, Varaprasad K, Sadiku ER, Ray SS, Mbianda XY, Fotsing MC, Owonubi SJ, Agwuncha SC, 2015. Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. Int. J. Biol. Macromol. 73, 115–123. PubMed
Agarwal S, Wendorff JH, Greiner A, 2008. Use of electrospinning technique for biomedical applications. Polymer (Guildf). 49, 5603–5621.
Ahmmad B, Leonard K, Shariful Islam M, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y, 2013. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24, 160–167.
Akhtar MS, Panwar J, Yun Y-S, 2013. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 1, 591–602.
Alam MS, Garg A, Pottoo FH, Saifullah MK, Tareq AI, Manzoor O, Mohsin M, Javed MN, 2017. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. Int. J. Biol. Macromol. 104, 758–767. PubMed
Alborzi S, Lim LT, Kakuda Y, 2014. Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under invitro conditions. LWT - Food Sci. Technol. 59, 383–388.
Alborzi S, Lim LT, Kakuda Y, 2013. Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospun fibres. J. Microencapsul. 30, 64–71. PubMed
Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M, 2012. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J. Phys. Chem. C 116, 3369–3375.
Anastas PT, Warner JC, 1998. Green chemistry : theory and practice. Oxford University Press, New York.
Anderson DM, Wang WP, 1990. Composition of the gum from Combretum paniculatum and four other gums which are not permitted food additives. Phytochemistry 29, 1193–1195. PubMed
Anderson DMW, Bridgeman MME, 1985. The composition of the proteinaceous polysaccharides exuded by astragalus microcephalus, A. Gummifer and A. Kurdicus—The sources of turkish gum tragacanth. Phytochemistry 24, 2301–2304.
Anderson DMW, Grant DAD, 1988. The chemical characterization of some Astragalus gum exudates. Food Hydrocoll. 2, 417–423.
Anderson DMW, Howlett JF, McNab CGA, 1985a. The amino acid composition of the proteinaceous component of gum arabic (Acacia Senegal(L.) Willd.). Food Addit. Contam. 2, 159–164. PubMed
Anderson DMW, Howlett JF, McNab CGA, 1985b. The amino acid composition of the proteinaceous component of gum karaya (Sterculia sp.). Food Addit. Contam. 2, 153–157. PubMed
Anderson DMW, McDougall FJ, 1987. The amino acid composition and quantitative sugar‐amino acid relationships in sequential Smith‐degradation products from gum arabic (Acacia Senegal(L.) Willd.). Food Addit. Contam. 4, 125–132. PubMed
Anderson DMW, Mcnab CGA, Anderson CG, Brown PM, Pringuer MA, 1983. Studies Of Uronic Acid Materials, Part 58: Gum Exudates From The Genus Sterculia (Gum Karaya). Int. Tree Crop. J. 2, 147–154.
Anderson DMW, Stoddart JF, 1966. Studies on uronic acid materials. Carbohydr. Res. 2, 104–114.
Anderson DMW, Weiping W, 1992. Gum Arabic (Acacia Senegal) From Uganda: Characteristic N.M.R. Spectra, Amino Acid Compositions, And Gum/Soil Cationic Relationships. Int. Tree Crop. J. 7, 167–179.
Armendariz V, Herrera I, Peralta-videa JR, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL, 2004. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanoparticle Res. 6, 377–382.
Asghari-Varzaneh E, Shahedi M, Shekarchizadeh H, 2017. Iron microencapsulation in gum tragacanth using solvent evaporation method. Int. J. Biol. Macromol. 103, 640–647. PubMed
Atila D, Keskin D, Tezcaner A, 2015. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr. Polym. 133, 251–261. PubMed
Attallah OA, Al-Ghobashy MA, Nebsen M, Salem MY, 2016. Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 6, 11461–11480.
Augustin MA, Hemar Y, 2009. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38, 902–912. PubMed
Aydin YA, Aksoy ND, 2009. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem. Eng. J. 151, 188–194.
Bacelar AH, Silva-Correia J, Oliveira JM, Reis RL, 2016. Recent progress in gellan gum hydrogels provided by functionalization strategies. J. Mater. Chem. B 4, 6164–6174. PubMed
Bahulkar SS, Munot NM, Surwase SS, 2015. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties. Carbohydr. Polym. 130, 183–190. PubMed
Bajpai SK, Jadaun M, Tiwari S, 2016. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels. Carbohydr. Polym. 153, 60–65. PubMed
Bajpai SK, Kumari M, 2015. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels. Int. J. Biol. Macromol. 80, 177–188. PubMed
Balaghi S, Mohammadifar MA, Zargaraan A, Gavlighi HA, Mohammadi M, 2011. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocoll. 25, 1775–1784.
Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R, 2002. Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Lett. 2, 25–28.
Banerjee SS, Chen D-H, 2007a. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147, 792–799. PubMed
Banerjee SS, Chen DH, 2007b. Glucose-grafted gum arabic modified magnetic nanoparticles: Preparation and specific interaction with Concanavalin A. Chem. Mater. 19, 3667–3672.
Bankura KP, Maity D, Mollick MMR, Mondal D, Bhowmick B, Bain MK, Chakraborty A, Sarkar J, Acharya K, Chattopadhyay D, 2012. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr. Polym. 89, 1159–1165. PubMed
Baptista AC, Martins JI, Fortunato E, Martins R, Borges JP, Ferreira I, 2011. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosens. Bioelectron. 26, 2742–2745. PubMed
Barber PS, Griggs CS, Bonner JR, Rogers RD, 2013. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem. 15, 601.
Baruwati B, Polshettiwar V, Varma RS, 2009. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 11, 926.
Baruwati B, Varma RS, 2009. High Value Products from Waste: Grape Pomace Extract—A Three-in-One Package for the Synthesis of Metal Nanoparticles. ChemSusChem 2, 1041–1044. PubMed
Batalha IL, Hussain A, Roque ACA, 2010. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. J. Mol. Recognit. 23, 462–471. PubMed
Bera H, Boddupalli S, Nayak AK, 2015. Mucoadhesive-floating zinc-pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydr. Polym. 131, 108–118. PubMed
Bhattarai N, Li Z, Edmondson D, Zhang M, 2006. Alginate-Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties. Adv. Mater. 18, 1463–1467.
Bhattarai N, Zhang M, 2007. Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18, 455601.
Bie Y, Yang J, Nuli Y, Wang J, 2017. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. J. Mater. Chem. A 5, 1919–1924.
Bonino CA, Krebs MD, Saquing CD, Jeong SI, Shearer KL, Alsberg E, Khan SA, 2011. Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydr. Polym. 85, 111–119.
Bosnea LA, Moschakis T, Biliaderis CG, 2017. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food Funct. 8, 554–562. PubMed
Boury B, Plumejeau S, 2015. Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem. 17, 72–88.
Brito ACF, Silva DA, de Paula RCM, Feitosa JPA, 2004. Sterculia striata exudate polysaccharide: characterization, rheological properties and comparison with Sterculia urens(karaya) polysaccharide. Polym. Int. 53, 1025–1032.
Cao X, Wang X, Ding B, Yu J, Sun G, 2013. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers. Carbohydr. Polym. 92, 2041–2047. PubMed
Castellani O, Al-Assaf S, Axelos M, Phillips GO, Anton M, 2010. Hydrocolloids with emulsifying capacity. Part 2 – Adsorption properties at the n-hexadecane–Water interface. Food Hydrocoll. 24, 121–130.
Chabot V, Kim B, Sloper B, Tzoganakis C, Yu A, 2013. High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication. Sci. Rep. 3, 1378. PubMed PMC
Chanda N, Upendran A, Boote EJ, Zambre A, Axiak S, Selting K, Katti KV, Leevy WM, Afrasiabi Z, Vimal J, Singh J, Lattimer JC, Kannan R, 2014. Gold Nanoparticle Based X-Ray Contrast Agent for Tumor Imaging in Mice and Dog: A Potential NanoPlatform for Computer Tomography Theranostics. J. Biomed. Nanotechnol. 10, 383–392. PubMed
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M, 2006. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnol. Prog. 22, 577–583. PubMed
Chang JJ, Lee YH, Wu MH, Yang MC, Chien CT, 2012. Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydr. Polym. 88, 1304–1312.
Chang YC, Chen DH, 2005. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 283, 446–451. PubMed
Chaudhary JP, Mahto A, Vadodariya N, Kholiya F, Maiti S, Natraj SK, Meena R, 2016. Fabrication of carbon and sulphur-doped nanocomposites with seaweed polymer carrageenan as efficient catalyst for rapid degradation of dye pollutants using solar concentrator. RSC Adv. 6, 61716.
Chen D, Yang K, Wang H, Zhou J, Zhang H, 2015. Cr( VI ) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water. RSC Adv. 5, 65068–65073.
Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J, 2011. Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight. J. Phys. Chem. C 115, 4425–4432.
Cinelli M, Coles SR, Nadagouda MN, Błaszczyński J, Słowiński R, Varma RS, Kirwan K, 2015. A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem. 17, 2825–2839. PubMed PMC
Coccia F, Tonucci L, Bosco D, Bressan M, D’Alessandro N, 2012. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 14, 1073–1078.
Colvin VL, 2003. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166–1170. PubMed
Committee On Toxicology, 2001. Arsenic in Drinking Water, Update. National Academies Press, Washington, D.C. https://doi.org/10.17226/10194. DOI
Cornelsen PA, Quintanilha RC, Vidotti M, Gorin PAJ, Simas-Tosin FF, Riegel-Vidotti IC, 2015. Native and structurally modified gum arabic: exploring the effect of the gum’s microstructure in obtaining electroactive nanoparticles. Carbohydr. Polym. 119, 35–43. PubMed
Correa SN, Naranjo AM, Herrera AP, 2016. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves. J. Phys. Conf. Ser. 687, 12082.
Cui S, Yao B, Gao M, Sun X, Gou D, Hu J, Zhou Y, Liu Y, 2017. Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydr. Polym. 157, 766–774. PubMed
Cui S, Yao B, Sun X, Hu J, Zhou Y, Liu Y, 2016. Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Mater. Sci. Eng. C 59, 885–893. PubMed
Das D, Pal S, 2015. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv. 5, 25014–25050.
Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S, 2017. Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946–7020. PubMed
Das T, Yeasmin S, Khatua S, Acharya K, Bandyopadhyay A, 2015. Influence of a blend of guar gum and poly(vinyl alcohol) on long term stability, and antibacterial and antioxidant efficacies of silver nanoparticles. RSC Adv. 5, 54059–54069.
Dasari A, Guttena V, 2016. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B Biol. 157, 57–69. PubMed
Dauthal P, Mukhopadhyay M, 2016. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 55, 9557–9577.
Davidson RL, 1980. Handbook of water-soluble gums and resins. McGraw-Hill, London, United States.
Davis TA, Llanes F, Volesky B, Mucci A, 2003. Metal selectivity of Sargassum spp. and their alginates in relation to their α-L-guluronic acid content and conformation. Environ. Sci. Technol. 37, 261–267. PubMed
Davis TA, Volesky B, Mucci A, 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311–4330. PubMed
de Brito ACF, Sierakowski MR, Reicher F, Feitosa JPA, de Paula RCM, 2005. Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocoll. 19, 861–867.
De France KJ, Hoare T, Cranston ED, 2017. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 29, 4609–4631.
Desai K, Kit K, Li J, Michael Davidson P, Zivanovic S, Meyer H, 2009. Nanofibrous chitosan non-wovens for filtration applications. Polymer (Guildf). 50, 3661–3669.
Deshmukh AS, Setty CM, Badiger AM, Muralikrishna KSS, 2012. Gum ghatti: A promising polysaccharide for pharmaceutical applications. Carbohydr. Polym. 87, 980–986.
Devendiran RM, kumar Chinnaiyan, S., Yadav NK, Moorthy GK, Ramanathan G, Singaravelu S, Sivagnanam UT, Perumal PT, 2016. Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Adv. 6, 29757–29768.
Devi DK, Pratap SV, Haritha R, Sivudu KS, Radhika P, Sreedhar B, 2011. Gum acacia as a facile reducing, stabilizing, and templating agent for palladium nanoparticles. J. Appl. Polym. Sci. 121, 1765–1773.
Devi LS, Joshi SR, 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya. Mycobiology 40, 27–34. PubMed PMC
Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad BLV, 2012. Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies. Nanoscale 4, 563–567. PubMed
Dufficy MK, Khan SA, Fedkiw PS, 2015. Galactomannan binding agents for silicon anodes in Li-ion batteries. J. Mater. Chem. A 3, 12023–12030.
Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-NN, Lee C, Varma RS, 2015. Fate of engineered nanoparticles: Implications in the environment. Coord. Chem. Rev. 287, 64–78.
El-Rafie MH, El-Naggar ME, Ramadan MA, Fouda MMG, Al-Deyab SS, Hebeish A, 2011. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr. Polym. 86, 630–635.
Elemike EE, Onwudiwe DC, Ekennia AC, Ehiri RC, Nnaji NJ, 2017. Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora : Antimicrobial, larvicidal and photocatalytic evaluations. Mater. Sci. Eng. C 75, 980–989. PubMed
Elsabee MZ, Naguib HF, Morsi RE, 2012. Chitosan based nanofibers, review. Mater. Sci. Eng. C 32, 1711–1726. PubMed
Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ, 2016. Application of metal and metal oxide nanoparticles at MOFs. Coord. Chem. Rev. 307, 237–254.
Fan J, Shi Z, Ge Y, Wang J, Wang Y, Yin J, 2012. Gum arabic assisted exfoliation and fabrication of Ag–graphene-based hybrids. J. Mater. Chem. 22, 13764–13772.
Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H, 2010. Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy. Nano Lett. 10, 5006–5013. PubMed
Farooq M, Sagbas S, Sahiner M, Siddiq M, Turk M, Aktas N, Sahiner N, 2017. Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohydr. Polym. 156, 380–389. PubMed
Fauconnier ML, Blecker C, Groyne J, Razafindralambo H, Vanzeveren E, Marlier M, Paquot M, 2000. Characterization of two Acacia gums and their fractions using a Langmuir film balance. J. Agric. Food Chem. 48, 2709–2712. PubMed
Ferris CJ, In het Panhuis M, 2009. Conducting bio-materials based on gellan gum hydrogels. Soft Matter 5, 3430–3437.
Finotelli PV, Da Silva D, Sola-Penna M, Rossi AM, Farina M, Andrade LR, Takeuchi AY, Rocha-Leão MH, 2010. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surfaces B Biointerfaces 81, 206–211. PubMed
Flickinger MC, 2010. Encyclopedia of industrial biotechnology : bioprocess, bioseparation, and cell technology. Wiley, Hoboken, N.J: 10.1002/9780470054581 DOI
Forget A, Arya N, Randriantsilefisoa R, Miessmer F, Buck M, Ahmadi V, Jonas D, Blencowe A, Shastri VP, 2016. Nonwoven Carboxylated Agarose-Based Fiber Meshes with Antimicrobial Properties. Biomacromolecules 17, 4021–4026. PubMed
Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP, 2011. Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem. 13, 3173–3180.
Frenot A, Chronakis IS, 2003. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8, 64–75.
Fryxell GE, Cao G, 2007. Environmental applications of nanomaterials : synthesis, sorbents and sensors. Imperial College Press.
Fu R, Li C, Yu C, Xie H, Shi S, Li Z, Wang Q, Lu L, 2016. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv. 23, 828–839. PubMed
Gashua IB, Williams PA, Baldwin TC, 2016. Molecular characteristics, association and interfacial properties of gum Arabic harvested from both Acacia senegal and Acacia seyal. Food Hydrocoll. 61, 514–522.
Gavlighi HA, Meyer AS, Zaidel DNA, Mohammadifar MA, Mikkelsen JD, 2013a. Stabilization of emulsions by gum tragacanth (Astragalus spp.) correlates to the galacturonic acid content and methoxylation degree of the gum. Food Hydrocoll. 31, 5–14.
Gavlighi HA, Mikkelsen H, Meyer JD, 2013b. Tragacanth Gum: Structural Composition, Natural Functionality and Enxymatic Conversion as Source of Potential Prebiotic Activity. Technical University of Denmark.
Ghayempour S, Montazer M, Mahmoudi Rad M, 2016. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr. Polym. 136, 232–241. PubMed
Gils PS, Ray D, Sahoo PK, 2010. Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int. J. Biol. Macromol. 46, 237–244. PubMed
Glicksman M, 1982. Food hydrocolloids, in: Food Hydrocolloids. CRC Press, Boca Raton, p. 240.
Gok C, Aytas S, 2009. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J. Hazard. Mater. 168, 369–375. PubMed
Grassian VH, 2008. Nanoscience and nanotechnology : environmental and health impacts; Hoboken, NJ, USA: 10.1002/9780470396612 DOI
Grein-Iankovski A, Riegel-Vidotti IC, Simas-Tosin FF, Narayanan S, Leheny RL, Sandy AR, 2016. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums. Soft Matter 12, 9321–9329. PubMed
Greiner A, Wendorff JHH, 2007. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chemie Int. Ed. 46, 5670–5703. PubMed
Haider S, Park S-Y, 2009. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J. Memb. Sci. 328, 90–96.
Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M, 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511. PubMed
Hall SR, 2009. Biotemplating : complex structures from natural materials. Imperial College Press.
Hebbalalu D, Lalley J, Nadagouda MN, Varma RS, 2013. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sustain. Chem. Eng. 1, 703–712.
Hemmati K, Masoumi A, Ghaemy M, 2016. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr. Polym. 136, 630–640. PubMed
Hoffman AS, 2002. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12. PubMed
Homayoni H, Ravandi SAH, Valizadeh M, 2009. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym. 77, 656–661.
Horst MF, Coral DF, Fernández van Raap MB, Alvarez M, Lassalle V, 2017. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater. Sci. Eng. C 74, 443–450. PubMed
Hortigü MJ, Aranaz I, Gutiérrez MC, Ferrer ML, del Monte F, 2011. Chitosan Gelation Induced by the in Situ Formation of Gold Nanoparticles and Its Processing into Macroporous Scaffolds. Biomacromolecules 12, 179–186. PubMed
Huang J, Lin L, Sun D, Chen H, Yang D, Li Q, 2015. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44, 6330–6374. PubMed
Hungerford G, Toury M, McLoskey D, Donaldson N, Holmes-Smith AS, 2012. In situ formation of silvernanostructures within a polysaccharide film and application as a potential biocompatible fluorescence sensing medium. Soft Matter 8, 653–659.
Ido T, Ogasawara T, Katayama T, Sasaki Y, Al-Assaf S, Phillips GO, 2008. Emulsification property of GATIFOLIA (gum ghatti) used for emulsions in food products. Foods Food Ingredients J. Japan 213, 365–372.
Ignatova M, Manolova N, Rashkov I, Markova N, 2016. Quaternized chitosan/κ-carrageenan/caffeic acid–coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity. Int. J. Pharm. 513, 528–537. PubMed
Iravani S, 2011. Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650.
Islam MS, Karim MR, 2010. Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids Surfaces A Physicochem. Eng. Asp. 366, 135–140.
Islam MS, Yeum JH, Das AK, 2012. Effect of pullulan/poly(vinyl alcohol) blend system on the montmorillonite structure with property characterization of electrospun pullulan/poly(vinyl alcohol)/montmorillonite nanofibers. J. Colloid Interface Sci. 368, 273–281. PubMed
Izawa H, Kadokawa J, 2010. Preparation and characterizations of functional ionic liquid-gel and hydrogel materials of xanthan gum. J. Mater. Chem. 20, 5235–5241.
Jakóbik-Kolon A, Bok-Badura J, Karoń K, Mitko K, Milewski A, 2017. Hybrid pectin-based biosorbents for zinc ions removal. Carbohydr. Polym. 169, 213–219. PubMed
Janaki B, Sashidhar RB, 2000. Subchronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermumgossypium). Food Chem. Toxicol. 38, 523–534. PubMed
Janaki B, Sashidhar RB, 1998. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food Chem. 61, 231–236.
Jang H, Kim Y-K, Huh H, Min D-H, 2014. Facile Synthesis and Intraparticle Self-Catalytic Oxidation of Dextran-Coated Hollow Au–Ag Nanoshell and Its Application for Chemo-Thermotherapy. ACS Nano 8, 467–475. PubMed
Jaouen V, Brayner R, Lantiat D, Steunou N, Coradin T, 2010. Insitu growth of gold colloids within alginate films. Nanotechnology 21, 185605. PubMed
Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S, Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol. 4, 52–65. PubMed
Jeong S, Choi SY, Park J, Seo J-H, Park J, Cho K, Joo S-W, Lee SY, 2011. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J. Mater. Chem. 21, 13853–13859.
Jha AK, Prasad K, Prasad K, Kulkarni AR, 2009. Plant system: Nature’s nanofactory. Colloids Surfaces B Biointerfaces 73, 219–223. PubMed
Ji J, Bar-On B, Wagner HD, 2012. Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J. Mech. Behav. Biomed. Mater. 13, 185–193. PubMed
Ji M, Chen X, Wai CM, Fulton JL, 1999. Synthesizing and Dispersing Silver Nanoparticles in a Water-in-Supercritical Carbon Dioxide Microemulsion. J. Am. Chem. Soc. 121, 2631–2632. PubMed PMC
Juang R-S, Shiau R-C, 2000. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Memb. Sci. 165, 159–167.
Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN, 2012. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr. Polym. 89, 906–913. PubMed
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J, 2016. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem. Rev. 116, 1496–1539. PubMed
Kaith BS, Sharma K, Kumar V, Kalia S, Swart HC, 2014. Fabrication and characterization of gum ghatti-polymethacrylic acid based electrically conductive hydrogels. Synth. Met. 187, 61–67.
Kalaignana Selvi S, Mahesh Kumar J, Sashidhar RB, 2017. Anti-proliferative activity of Gum kondagogu ( Cochlospermum gossypium )-gold nanoparticle constructs on B16F10 melanoma cells: An in vitro model. Bioact. Carbohydrates Diet. Fibre 11, 38–47.
Kang J, Cui SW, Chen J, Phillips GO, Wu Y, Wang Q, 2011a. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food Hydrocoll. 25, 1984–1990.
Kang J, Cui SW, Phillips GO, Chen J, Guo Q, Wang Q, 2011b. New studies on gum ghatti (Anogeissus latifolia) part II. Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 25, 1991–1998.
Kang J, Cui SW, Phillips GO, Chen J, Guo Q, Wang Q, 2011c. New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 25, 1999–2007.
Kang J, Guo Q, Phillips GO, Cui SW, 2014. Understanding the structure–emulsification relationship of gum ghatti – A review of recent advances. Food Hydrocoll. 42, 187–195.
Kang J, Guo Q, Wang Q, Phillips GO, Cui SW, 2015a. New studies on gum ghatti (Anogeissuslatifolia) part 6: Physicochemical characteristics of the protein moiety of gum ghatti. Food Hydrocoll. 44, 237–243.
Kang J, Guo Q, Wang Q, Phillips GO, Cui SW, 2015b. New studies on gum ghatti (Anogeissus latifolia) part 5: The conformational properties of gum ghatti. Food Hydrocoll. 43, 25–30.
Kanmani P, Lim ST, 2013. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr. Polym. 97, 421–428. PubMed
Kannan R, Rahing V, Cutler C, Pandrapragada R, Katti KK, Kattumuri V, Robertson JD, Casteel SJ, Jurisson S, Smith C, Boote E, Katti KV, 2006. Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. J. Am. Chem. Soc. 128, 11342–11343. PubMed
Kannan R, Zambre A, Chanda N, Kulkarni R, Shukla R, Katti K, Upendran A, Cutler C, Boote E, Katti KV, 2012. Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 4, 42–51. PubMed
Katayama T, Ido T, Sasaki Y, Ogasawara T, Al-Assaf S, Phillips G, 2008. Characterization of the adsorbed component of gum ghatti responsible for its oil–water interface advantages. Foods Food Ingredients J. Japan 213, 372–376.
Kattumuri V, Katti KKVV, Bhaskaran S, Boote EJJ, Casteel SWW, Fent GMM, Robertson DJJ, Chandrasekhar M, Kannan R, Katti KKVV, 2007. Gum Arabic as a Phytochemical Construct for the Stabilization of Gold Nanoparticles: In Vivo Pharmacokinetics and X-ray-Contrast-Imaging Studies. Small 3, 333–341. PubMed
Katzbauer B, 1998. Properties and applications of xanthan gum. Polym. Degrad. Stab. 59, 81–84.
Keller A, Pham J, Warren H, in het Panhuis M, 2017. Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 5318–5328. PubMed
Khadka DB, Haynie DT, 2012. Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine Nanotechnology, Biol. Med. 8, 1242–1262. PubMed
Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Tahir MN, Siddiqui MRH, 2014. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalt. Trans. 43, 9026–9031. PubMed
Khan MZI, Prebeg Ž, Kurjaković N, 1999. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit L100–55 and Eudragit S100 combinations. J. Control. Release 58, 215–222. PubMed
Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S, 2012. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109.
Ki CS, Gang EH, Um IC, Park YH, 2007. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J. Memb. Sci. 302, 20–26.
Kim SH, Nam YS, Lee TS, Park WH, 2003. Silk fibroin nanofiber. Electrospinning, properties, and structure. Polym. J. 35, 185–190.
Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R, 2001. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol. 35, 4283–4288. PubMed
Kodiyan A, Silva EA, Kim J, Aizenberg M, Mooney DJ, 2012. Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano 6, 4796–4805. PubMed
Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO, 2014. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int. J. Biol. Macromol. 65, 155–162. PubMed
Kong L, Ziegler GR, 2014. Rheological aspects in fabricating pullulan fibers by electro-wet-spinning. Food Hydrocoll. 38, 220–226.
Konwarh R, Karak N, Misra M, 2013. Electrospun cellulose acetate nanofibers: The present status and gamut of biotechnological applications. Biotechnol. Adv. 31, 421–437. PubMed
Kora A, Beedu S, Jayaraman A, 2012. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2, 17. PubMed PMC
Kora AJ, Rastogi L, 2015. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab. J. Chem. In Press, DOI: 10.1016/j.arabjc.2015.06.024 DOI
Kora AJ, Sashidhar RB, 2015. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study. J. Antibiot. (Tokyo). 68, 88–97. PubMed
Kora AJ, Sashidhar RB, 2018. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: Antibacterial activity, cytotoxicity and its mode of action. Arab. J. Chem. 11, 313–323.
Kora AJ, Sashidhar RB, Arunachalam J, 2010. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. 82, 670–679.
Kou J, Varma RS, 2012a. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem 5, 2435–2441. PubMed
Kou J, Varma RS, 2012b. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv. 2, 10283–10290.
Kou J, Varma RS, 2013. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions. Chem. Commun. 49, 692–694. PubMed
Kratochvil D, Volesky B, 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300.
Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J, 2008. Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775–797. PubMed
Kulanthaivel S, Rathnam VSS, Agarwal T, Pradhan S, Pal K, Giri S, Maiti TK, Banerjee I, 2017. Gum tragacanth–alginate beads as proangiogenic–osteogenic cell encapsulation systems for bone tissue engineering. J. Mater. Chem. B 5, 4177–4189. PubMed
Kumar A, Aerry S, Saxena A, De A, Mozumdar S, 2012. Copper nanoparticulates in Guar-gum: a recyclable catalytic system for the Huisgen [3 + 2]-cycloaddition of azides and alkynes without additives under ambient conditions. Green Chem. 14, 1298–1301.
Kumar A, Ahuja M, 2012. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym. 90, 637–643. PubMed
Kumar N, Mittal H, Parashar V, Ray SS, Ngila JC, 2016. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv. 6, 21929–21939.
Kumbhare V, Bhargava A, 1999. Studies on the nutritional composition of Sterculia species. J. Food Sci. Technol. 36, 542–544.
Le Cerf D, Irinei F, Muller G, 1990. Solution properties of gum exudates from Sterculia urens (Karaya gum). Carbohydr. Polym. 13, 375–386.
Lee KY, Jeong L, Kang YO, Lee SJ, Park WH, 2009. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 61, 1020–1032. PubMed
Leslie SK, Cohen DJ, Sedlaczek J, Pinsker EJ, Boyan BD, Schwartz Z, 2013. Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials 34, 8172–8184. PubMed
Li J, Mooney DJ, 2016. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 10.1038/natrevmats.2016.71 PubMed DOI PMC
Li L, Ni R, Shao Y, Mao S, 2014. Carrageenan and its applications in drug delivery. Carbohydr. Polym. 103, 1–11. PubMed
Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M, 2017. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Appl. Mater. Interfaces 9, 22160–22175. PubMed PMC
Li S, Yue X, Jing Y, Bai S, Dai Z, 2011. Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids Surfaces A Physicochem. Eng. Asp. 380, 229–233.
Li X, Yang Q, Zhao Y, Long S, Zheng J, 2017. Soft Matter hydrogels with high toughness and self-healing. Soft Matter 13, 911–920. PubMed
Li X, Zhang H, Jin Q, Cai Z, 2017. Contribution of arabinogalactan protein to the stabilization of single-walled carbon nanotubes in aqueous solution of gum arabic. Food Hydrocoll. In Press, DOI: 10.1016/j.foodhyd.2017.08.013 DOI
Li Y, Gan W, Zhou J, Lu Z, Yang C, Ge T, 2015. Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions. Trans. Nonferrous Met. Soc. China 25, 2081–2086.
Li Z, Ravaine V, Ravaine S, Garrigue P, Kuhn A, 2007. Raspberry-like Gold Microspheres: Preparation and Electrochemical Characterization. Adv. Funct. Mater. 17, 618–622.
Liang D, Hsiao BS, Chu B, 2007. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59, 1392–412. PubMed PMC
Lim S-F, Zheng Y-M, Zou S-W, Chen JP, 2009. Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem. Eng. J. 152, 509–513.
Lin HY, Chen HH, Chang SH, Ni TS, 2013. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J. Biomater. Sci. Polym. Ed. 24, 470–484. PubMed
Liu Q, Duan B, Xu X, Zhang L, 2017. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J. Mater. Chem. B 5, 5690–5713. PubMed
Liu Y, Zhao J-C, Zhang C-J, Guo Y, Cui L, Zhu P, Wang D-Y, 2015. Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior. RSC Adv. 5, 64125–64137.
Lokanathan AR, Uddin KMA, Rojas OJ, Laine J, 2014. Cellulose Nanocrystal-Mediated Synthesis of Silver Nanoparticles: Role of Sulfate Groups in Nucleation Phenomena. Biomacromolecules 15, 373–379. PubMed
Long Y, Ran X, Zhang L, Guo Q, Yang T, Gao J, Cheng H, Cheng T, Shi C, Su Y, 2013. A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight. Mater. Lett. 112, 101–104.
Louie SM, Tilton RD, Lowry GV, 2016. Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ. Sci. Nano 3, 283–310.
López-Castejón ML, Bengoechea C, García-Morales M, Martínez I, 2016. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties. Carbohydr. Polym. 152, 62–69. PubMed
López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM, 2012. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll. 28, 159–167.
Lu F, Astruc D, 2018. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 356, 147–164.
Lubambo AF, de Freitas RA, Sierakowski M-RR, Lucyszyn N, Sassaki GL, Serafim BM, Saul CK, 2013. Electrospinning of commercial guar-gum: Effects of purification and filtration. Carbohydr. Polym. 93, 484–491. PubMed
Lubambo AF, Ono L, Drago V, Mattoso N, Varalda J, Sierakowski MR, Sakakibara CN, Freitas RA, Saul CK, 2015. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes. Carbohydr. Polym. 134, 775–783. PubMed
Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT, 2011. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353, 433–444. PubMed
Luque R, Ojeda M, Garcia A, Lastres C, Campos R, Pineda A, Romero AA, Yepez A, 2013. Evaluation of biomass-derived stabilising agents for colloidal silver nanoparticles via nanoparticle tracking analysis (NTA). RSC Adv. 3, 7119–7123.
Luque R, Varma RS (Eds.), 2012. Sustainable Preparation of Metal Nanoparticles, RSC Green Chemistry. Royal Society of Chemistry, Cambridge: 10.1039/9781849735469 DOI
Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV, 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 46, 752–759. PubMed
Mahanta N, Valiyaveettil S, 2011. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 3, 4625–4631. PubMed
Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC, 2008. New Insights into the Structural Characteristics of the Arabinogalactan−Protein (AGP) Fraction of Gum Arabic. J. Agric. Food Chem. 56, 9269–9276. PubMed
Malik S, Ahuja M, 2011. Gum kondagogu-g-poly (acrylamide): Microwave-assisted synthesis, characterisation and release behaviour. Carbohydr. Polym. 86, 177–184.
Mallakpour S, Abdolmaleki A, Tabesh F, 2018. Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. Ultrason. Sonochem. 41, 572–581. PubMed
Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL, 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4, 999–1030. PubMed PMC
Masoumi A, Ghaemy M, 2014. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: Isotherm and kinetic study. Carbohydr. Polym. 108, 206–215. PubMed
Matheickal JT, Yu Q, Woodburn GM, 1999. Biosorption of cadmium(II) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum. Water Res. 33, 335–342.
Matlack AS, 2010. Introduction to green chemistry, Second Edi ed. CRC Press, Boca Raton, Fla.
Matsumoto H, Tanioka A, 2011. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes (Basel). 1, 249–264. PubMed PMC
Matthews JA, Wnek GE, Simpson DG, Bowlin GL, 2002. Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238. PubMed
Mendes AC, Stephansen K, Chronakis IS, 2017a. Electrospinning of food proteins and polysaccharides. Food Hydrocoll. 68, 53–68.
Mendes AC, Strohmenger T, Goycoolea F, Chronakis IS, 2017b. Electrostatic self-assembly of polysaccharides into nanofibers. Colloids Surfaces A Physicochem. Eng. Asp. 531, 182–188.
Minato KI, Ohkawa K, Yamamoto H, 2006. Chain conformations of poly(γ-benzyl-L-glutamate) pre and post an electrospinning process. Macromol. Biosci. 6, 487–495. PubMed
Mishra A, Clark JH (Eds.), 2013. Green Materials for Sustainable Water Remediation and Treatment, RSC Green Chemistry. Royal Society of Chemistry, Cambridge: 10.1039/9781849735001 DOI
Mittal AK, Chisti Y, Banerjee UC, 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356. PubMed
Mittal H, Jindal R, Kaith BS, Maity A, Ray SS, 2015. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr. Polym. 115, 617–628. PubMed
Mittal H, Maity A, Ray SS, 2016. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Appl. Surf. Sci. 364, 917–930.
Mittal H, Maity A, Ray SS, 2015a. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem. Eng. J. 279, 166–179.
Mittal H, Maity A, Sinha Ray S, 2015b. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide- co -acrylonitrile) biodegradable hydrogel: Isotherms and kinetic models J. Phys. Chem. B 119, 2026–2039. PubMed
Mittal H, Mishra SB, 2014. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym. 101, 1255–1264. PubMed
Mohammadinejad R, Karimi S, Iravani S, Varma RS, 2016. Plant-derived nanostructures: types and applications. Green Chem. 18, 20–52.
Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B, 2007. Preparation of acacia-stabilized silver nanoparticles: A green approach. J. Appl. Polym. Sci. 106, 3375–3381.
Montazer M, Keshvari A, Kahali P, 2016. Tragacanth gum /nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties. Carbohydr. Polym. 154, 257–266. PubMed
Monti OLA, Fourkas JT, Nesbitt DJ, 2004. Diffraction-Limited Photogeneration and Characterization of Silver Nanoparticles. J. Phys. Chem. B 108, 1604–1612.
Mostafavi FS, Kadkhodaee R, Emadzadeh B, Koocheki A, 2016. Preparation and characterization of tragacanth-locust bean gum edible blend films. Carbohydr. Polym. 139, 20–27. PubMed
Mude N, Ingle A, Gade A, Rai M, 2009. Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya — A First Report. J. Plant Biochem. Biotechnol. 18, 83–86.
Munarin F, Petrini P, Tanzi MC, Barbosa MA, Granja PL, 2012. Biofunctional chemically modified pectin for cell delivery. Soft Matter 8, 4731–4739.
Murali R, Thanikaivelan P, Cheirmadurai K, 2016a. Melatonin in functionalized biomimetic constructs promotes rapid tissue regeneration in Wistar albino rats. J. Mater. Chem. B 4, 5850–5862. PubMed
Murali R, Thanikaivelan P, Yan X, Lin Y, Xiao Z, Hou X, Dai J, Isner JM, Gurtner GC, Machens H-G, 2016b. Bionic, porous, functionalized hybrid scaffolds with vascular endothelial growth factor promote rapid wound healing in Wistar albino rats. RSC Adv. 6, 19252–19264.
Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS, 2014. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts. ACS Sustain. Chem. Eng. 2, 1717–1723.
Nadagouda MN, Polshettiwar V, Varma RS, 2009. Self-assembly of palladium nanoparticles: synthesis of nanobelts, nanoplates and nanotrees using vitamin B1, and their application in carbon–carbon coupling reactions. J. Mater. Chem. 19, 2026–2031.
Nadagouda MN, Varma RS, 2008. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole. J. Nanomater. 2008, 1–8. 10.1155/2008/782358 DOI
Nadagouda MN, Varma RS, 2007. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C. Cryst. Growth Des. 7, 2582–2587.
Nadagouda MN, Varma RS, 2006. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem. 8, 516–518.
Nadagouda MN, Varma RS, 2008. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 10, 859–862.
Naidu VGM, Madhusudhana K, Sashidhar RB, Ramakrishna S, Khar RK, Ahmed FJ, Diwan PV, 2009. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr. Polym. 76, 464–471.
Nair AV, Raman M, Doble M, 2016. Cyclic β-(1→3) (1→6) glucan/carrageenan hydrogels for wound healing applications. RSC Adv. 6, 98545–98553.
Navaladian S, Viswanathan B, Varadarajan TK, Viswanath RP, 2008. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Nanotechnology 19, 45603. PubMed
Neves SC, Gomes DB, Sousa A, Bidarra SJ, Petrini P, Moroni L, Barrias CC, Granja PL, 2015. Biofunctionalized pectin hydrogels as 3D cellular microenvironments. J. Mater. Chem. B 3, 2096–2108. PubMed
Nguyen TTT, Chung OH, Park JS, 2011. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr. Polym. 86, 1799–1806.
Nie H, He A, Zheng J, Xu S, Li J, Han CC, 2008. Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate. Biomacromolecules 9, 1362–1365. PubMed
Niknia N, Kadkhodaee R, 2017. Gum tragacanth-polyvinyl alcohol cryogel and xerogel blends for oral delivery of silymarin: Structural characterization and mucoadhesive property. Carbohydr. Polym. 177, 315–323. PubMed
Nishi KK, Jayakrishnan A, 2007. Self-gelling primaquine-gum Arabic conjugate: An injectable controlled delivery system for primaquine. Biomacromolecules 8, 84–90. PubMed
Nista SVG, Bettini J, Mei LHI, 2015. Coaxial nanofibers of chitosan-alginate-PEO polycomplex obtained by electrospinning. Carbohydr. Polym. 127, 222–228. PubMed
Nussinovitch A, 2010. Plant gum exudates of the world : sources, distribution, properties, and applications. CRC Press/Taylor & Francis, Boca Raton.
Osman ME, Menzies AR, Martin BA, Williams PA, Phillips GO, Baldwin TC, 1995. Characterization of gum arabic fractions obtained by anion-exchange chromatography. Phytochemistry 38, 409–417.
Osman ME, Menzies AR, Williams PA, Phillips GO, Baldwin TC, 1993a. The molecular characterisation of the polysaccharide gum from Acacia senegal. Carbohydr. Res. 246, 303–318.
Osman ME, Williams PA, Menzies AR, Phillips GO, 1993b. Characterization of commercial samples of gum arabic. J. Agric. Food Chem. 41, 71–77.
Padala SR, Williams PA, Phillips GO, 2009. Adsorption of Gum Arabic, Egg White Protein, and Their Mixtures at the Oil−Water Interface in Limonene Oil-in-Water Emulsions. J. Agric. Food Chem. 57, 4964–4973. PubMed
Padil VVT, Černík M, 2015. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J. Hazard. Mater. 287, 102–110. PubMed
Padil VVT, Nguyen NHAA, Rożek Z, Ševců A, Černík M, 2015a. Synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum Kondagogu, dodecenyl succinic anhydride and poly (vinyl alcohol). Surf. Coatings Technol. 271, 32–38.
Padil VVT, Senan C, Černík M, 2015b. Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): preparation, characterization, and their antibacterial properties. J. Agric. Food Chem. 63, 3757–3765. PubMed
Padil VVT, Senan C, Wacławek S, Černík M, 2016. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int. J. Biol. Macromol. 91, 299–309. PubMed
Padil VVT, Stuchlík M, Černík M, 2015c. Plasma modified nanofibres based on gum kondagogu and their use for collection of nanoparticulate silver, gold and platinum. Carbohydr. Polym. 121, 468–476. PubMed
Padil Vinod VT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, Somashekarappa HM, 2017. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 7, 13997–14009.
Pal P, Pandey JP, Sen G, 2017. Synthesis, characterization and flocculation studies of a novel graft copolymer towards destabilization of carbon nano-tubes from effluent. Polymer (Guildf). 112, 159–168.
Pal S, Patra AS, Ghorai S, Sarkar AK, Das R, Sarkar S, 2015. Modified guar gum/SiO 2 : development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ. Sci. Water Res. Technol. 1, 84–95.
Palaniraj A, Jayaraman V, 2011. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12.
Palma SICJ, Carvalho A, Silva J, Martins P, Marciello M, Fernandes AR, del Puerto Morales M, Roque ACA, 2015. Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: Physicochemical and in vitro characterization. Contrast Media Mol. Imaging 10, 320–328. PubMed
Pandey S, Goswami GK, Nanda KK, 2012. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int. J. Biol. Macromol. 51, 583–589. PubMed
Paul W, Sharma C, 2004. Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18, 18–23.
Pereao OK, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik LF, 2016. Electrospinning: Polymer Nanofibre Adsorbent Applications for Metal Ion Removal. J. Polym. Environ. 1–15. 10.1007/s10924-016-0896-y DOI
Petri DFS, 2015. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 132, 42035.
Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, 2016. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 45, 1225–1241. PubMed
Philippe A, Schaumann GE, 2014. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environ. Sci. Technol. 48, 8946–8962. PubMed
Philips GO, Williams PA, 2001. Tree exudates gums: Natural and versatile food additives and ingredients. Food Ingredients Anal. Int. 23, 26–28.
Phillips GO, Williams PA, 2009. Handbook of Hydrocolloids. Woodhead Pub.
Phillips GO, Williams PA, 2000. Handbook of hydrocolloids. CRC Press, Boca Raton, Fla. :
Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM, 2010. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids Surfaces A Physicochem. Eng. Asp. 364, 19–25.
Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R, 2015. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int. J. Biol. Macromol. 80, 48–56. PubMed
Prado BM, Kim S, Özen BF, Mauer LJ, 2005. Differentiation of Carbohydrate Gums and Mixtures Using Fourier Transform Infrared Spectroscopy and Chemometrics. J. Agric. Food Chem. 53, 2823–2829. PubMed
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, 2013. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym. 92, 1685–1699. PubMed
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC, 2013. Galactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 60, 83–92. PubMed
Pramanik N, Mitra T, Khamrai M, Bhattacharyya A, Mukhopadhyay P, Gnanamani A, Basu RK, Kundu PP, 2015. Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv. 5, 63489–63501.
Puskuri J, Katukam V, Sashidhar RB, 2017. Immunological evaluation of Gum kondagogu (Cochlospermum gossypium ): A tree gum with potential applications in food and pharma industry. Bioact. Carbohydrates Diet. Fibre 11, 48–52.
Qian Y, Qi M, Zheng L, King MW, Lv L, Ye F, 2016. Incorporation of rutin in electrospun pullulan/PVA nanofibers for novel UV-resistant properties. Materials (Basel). 9, 504. PubMed PMC
Qiu H, Yan J, Lan G, Liu Y, Song X, Peng W, Cui Y, 2016. Removal of Cu 2+ from wastewater by modified xanthan gum (XG) with ethylenediamine (EDA). RSC Adv. 6, 83226–83233.
Quintanilha RC, Orth ES, Grein-Iankovski A, Riegel-Vidotti IC, Vidotti M, 2014. The use of gum Arabic as “Green” stabilizer of poly(aniline) nanocomposites: A comprehensive study of spectroscopic, morphological and electrochemical properties. J. Colloid Interface Sci. 434, 18–27. PubMed
Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S, 2016. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol. 87, 141–154. PubMed
Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A, 2017. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol. 96, 185–191. PubMed
Raizaday A, Yadav HKS, Kumar SH, Kasina S, Navya M, Tashi C, 2015. Development of pH sensitive microparticles of Karaya gum: By response surface methodology. Carbohydr. Polym. 134, 353–363. PubMed
Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z, 2005. An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Company, Singapore: 10.1142/5894 DOI
Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE, 2010. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J. Mater. Sci. 45, 6283–6312.
Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ, 2011. Modified gums: Approaches and applications in drug delivery. Carbohydr. Polym. 83, 1031–1047.
Randall RC, Phillips GO, Williams PA, 1989. Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll. 3, 65–75.
Randall RC, Phillips GO, Williams PA, 1988. The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocoll. 2, 131–140.
Ranjbar-Mohammadi M, Bahrami SH, 2016. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int. J. Biol. Macromol. 84, 448–456. PubMed
Ranjbar-Mohammadi M, Bahrami SH, 2015. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Mater. Sci. Eng. C 48, 71–79. PubMed
Ranjbar-Mohammadi M, Bahrami SH, Joghataei MTT, 2013. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Mater. Sci. Eng. C 33, 4935–4943. PubMed
Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S, 2016a. Gum tragacanth/poly( l -lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr. Polym. 140, 104–112. PubMed
Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F, 2016b. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly($ε$-caprolactone) electrospun nanofibers. Mater. Sci. Eng. C 69, 1183–1191. PubMed
Ranjbar-Mohammadi M, Zamani M, Prabhakaran MPP, Bahrami SH, Ramakrishna S, 2016c. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater. Sci. Eng. C 58, 521–531. PubMed
Rao K, Imran M, Jabri T, Ali I, Shafiullah Perveen, S., Ahmed S, Shah MR, 2017. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM. Carbohydr. Polym. 174, 243–252. PubMed
Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A, 2010. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem. 79, 1240–1246.
Rastogi L, Karunasagar D, Sashidhar RB, Giri A, 2017. Peroxidase-like activity of gum kondagogu reduced/stabilized palladium nanoparticles and its analytical application for colorimetric detection of glucose in biological samples. Sensors Actuators B Chem. 240, 1182–1188.
Rastogi L, Kora AJ, Sashidhar RB, 2015. Antibacterial effects of gum kondagogu reduced/stabilized silver nanoparticles in combination with various antibiotics: a mechanistic approach. Appl. Nanosci. 5, 535–543.
Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J, 2014. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111–117. PubMed
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S, 2017. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater. Sci. Eng. 3, 1175–1194. PubMed
Rathore HS, Sarubala M, Ramanathan G, Singaravelu S, Raja MD, Gupta S, Sivagnanam UT, 2016. Fabrication of biomimetic porous novel sponge from gum kondagogu for wound dressing. Mater. Lett. 177, 108–111.
Raveendran P, Fu J, Wallen SL, 2006. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem. 8, 34–38.
Raveendran P, Fu J, Wallen SL, 2003. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc. 125, 13940–13941. PubMed
Reddy GB, Madhusudhan A, Ramakrishna D, Ayodhya D, Venkatesham M, Veerabhadram G, 2015. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: characterization, catalytic and antibacterial activity. J. Nanostructure Chem. 5, 185–193.
Redgwell RJ, Schmitt C, Beaulieu M, Curti D, 2005. Hydrocolloids from coffee: Physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocoll. 19, 1005–1015.
Reicha FM, Sarhan A, Abdel-Hamid MI, El-Sherbiny IM, 2012. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr. Polym. 89, 236–244. PubMed
Reneker DH, Yarin AL, Zussman E, Xu H, 2007. Electrospinning of Nanofibers from Polymer Solutions and Melts. Adv. Appl. Mech. 41, 43–195.
Rezaei A, Tavanai H, Nasirpour A, 2016. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int. J. Biol. Macromol. 91, 536–543. PubMed
Rhein-Knudsen N, Ale MT, Meyer AS, 2015. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar. Drugs. 13, 3340–3359. PubMed PMC
Ribeiro de Barros H, Cardoso MB, Camargo de Oliveira C, Cavichiolo Franco CR, de Lima Belan D, Vidotti M, Riegel-Vidotti IC, 2016. Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Adv. 6, 9411–9420. PubMed PMC
Rickerby DG, 2013. Sustainable Nanotechnology and the Environment: Advances and Achievements. ACS Symp. Ser., ACS Symposium Series. 10.1021/bk-2013-1124 DOI
Riedo C, Scalarone D, Chiantore O, 2013. Multivariate analysis of pyrolysis-GC/MS data for identification of polysaccharide binding media. Anal. Methods 5, 4060–4067.
Rocha I, Lucht E, Riegel-Vidotti IC, Vidotti M, Orth ES, 2014. Kinetic Approach to Elucidate Size Controllable Features in Nanocomposites of Gold Nanoparticles and Poly(3,4-ethylenedioxythiophene) in Aqueous Dispersion Stabilized by Gum Acacia. J. Phys. Chem. C 118, 25756–25764.
Rockwell PL, Kiechel MA, Atchison JS, Toth LJ, Schauer CL, 2014. Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydr. Polym. 107, 110–118. PubMed
Rodriguez E, Parsons JG, Peralta-Videa JR, Cruz-Jimenez G, Romero-Gonzalez J, Sanchez-Salcido BE, Saupe GB, Duarte-Gardea M, Gardea-Torresdey JL, 2007. Potential of Chilopsis Linearisfor Gold Phytomining: Using Xas to Determine Gold Reduction and Nanoparticle Formation Within Plant Tissues. Int. J. Phytoremediation 9, 133–147. PubMed
Ryou M-H, Hong S, Winter M, Lee H, Choi JW, 2013. Improved cycle lives of LiMn2O4 cathodes in lithium ion batteries by an alginate biopolymer from seaweed. J. Mater. Chem. A 1, 15224–15229.
Sadeghi S, Moghaddam AZ, Massinaei M, 2015. Novel tunable composites based on bentonite and modified tragacanth gum for removal of acid dyes from aqueous solutions. RSC Adv. 5, 55731–55745.
Sadeghi S, Rad FA, Moghaddam AZ, 2014. A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe3O4/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: Optimization by experimental design. Mater. Sci. Eng. C 45, 136–145. PubMed
Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S, 2012. Electrospun composite nanofibers and their multifaceted applications. J. Mater. Chem. 22, 12953–12971.
Sahraei R, Ghaemy M, 2017. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr. Polym. 157, 823–833. PubMed
Sahraei R, Sekhavat Pour Z, Ghaemy M, 2017. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 142, 2973–2984.
Samad YA, Asghar A, Hashaikeh R, 2013. Electrospun cellulose/PEO fiber mats as a solid polymer electrolytes for Li ion batteries. Renew. Energy 56, 90–95.
Sanchez C, Nigen M, Mejia Tamayo V, Doco T, Williams P, Amine C, Renard D, 2017. Acacia gum: History of the future. Food Hydrocoll. 10.1016/j.foodhyd.2017.04.008 DOI
Sand A, Yadav M, Behari K, 2010. Graft copolymerization of 2-Acrylamidoglycolic acid on to xanthan gum and study of its physicochemical properties. Carbohydr. Polym. 81, 626–632.
Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB, 2012. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater. Sci. Eng. C 32, 581–586.
Sari-Chmayssem N, Pessel F, Guégan JP, Taha S, Mawlawi H, Benvegnu T, 2016. Direct and one-pot conversion of polyguluronates and alginates into alkyl-L -guluronamide-based surfactant compositions. Green Chem. 18, 6573–6585.
Sarika PR, James NR, Kumar PRA, Raj DK, Kumary TV, 2015. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr. Polym. 134, 167–174. PubMed
Sarma TK, Chattopadhyay A, 2004. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir 20, 3520–3524. PubMed
Sashidhar RB, Selvi SK, Vinod VTP, Kosuri T, Raju D, Karuna R, 2015. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents. J. Environ. Radioact. 148, 33–41. PubMed
Sathishkumar M, Sneha K, Yun Y, 2009. Palladium nanocrystal synthesis using Curcuma longa tuber extract. Int. J. Mater. Sci. 4, 521–527.
Schiffman JD, Schauer CL, 2008. A Review: Electrospinning of Biopolymer Nanofibers and their Applications. Polym. Rev. 48, 317–352.
Salehizadeh H, Yan N, Farnood R, 2018. Recent advances in polysaccharide bio-based flocculants, Biotechnol. Adv. 36, 92–119. PubMed
Seliktar D, 2012. Designing cell-compatible hydrogels for biomedical applications. Science (80-. ). 336, 1124–1128. PubMed
Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S, 2012. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr. Polym. 87, 1295–1301.
Shah PS, Holmes JD, Doty RC, Johnston KP, Korgel BA, 2000. Steric stabilization of nanocrystals in supercritical CO2 using fluorinated ligands. J. Am. Chem. Soc. 122, 4245–4246.
Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R, 2011. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol. 49, 247–254. PubMed
Shankar SS, Ahmad A, Sastry M, 2003. Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnol. Prog. 19, 1627–1631. PubMed
Shankar SS, Rai A, Ahmad A, Sastry M, 2004. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–502. PubMed
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M, 2004. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482–488. PubMed
Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Som S, Swart HC, 2014. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology. Express Polym. Lett. 8, 267–281.
Sharma K, Kaith BS, Kumar V, Kumar V, Som S, Kalia S, Swart HC, 2013. Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Adv. 3, 25830–25839.
Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Kalia S, Swart HC, 2014. A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Adv. 4, 25637–25649.
Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Pandey A, Kalia S, Swart HC, 2015a. Evaluation of a conducting interpenetrating network based on gum ghatti-g-poly(acrylic acid-aniline) as a colon-specific delivery system for amoxicillin trihydrate and paracetamol. New J. Chem. 39, 3021–3034.
Sharma K, Kumar VV, Kaith BS, Som S, Kumar VV, Pandey A, Kalia S, Swart HC, 2015b. Synthesis of biodegradable Gum ghatti based poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind. Eng. Chem. Res. 54, 1982–1991.
Sharma VK, Filip J, Zboril R, Varma RS, 2015. Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44, 8410–8423. PubMed
Shekarforoush E, Faralli A, Ndoni S, Mendes AC, Chronakis IS, 2017. Electrospinning of Xanthan Polysaccharide. Macromol. Mater. Eng. 302, 1700067.
Shenoy SL, Bates WD, Frisch HL, Wnek GE, 2005. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer (Guildf). 46, 3372–3384.
Shukla SK, Shukla SK, Govender PP, Giri NG, 2016. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv. 6, 94325–94351.
Sill TJ, von Recum HA, 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006. PubMed
Silva SS, Mano JF, Reis RL, 2017. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220.
Simeonidis K, Mourdikoudis S, Kaprara E, Mitrakas M, Polavarapu L, 2016. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci. Water Res. Technol. 2, 43–70.
Singh A, Chaudhari M, Sastry M, 2006. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing. Nanotechnology 17, 2399–2405.
Singh B, Pal L, 2008. Development of sterculia gum based wound dressings for use in drug delivery. Eur. Polym. J. 44, 3222–3230.
Singh B, Sharma N, 2008. Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr. Polym. 74, 489–497.
Singh B, Sharma S, Dhiman A, 2013. Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int. J. Pharm. 457, 82–91. PubMed
Singh B, Sharma V, 2017. Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydr. Polym. 157, 185–195. PubMed
Singh B, Sharma V, 2014a. Correlation study of structural parameters of bioadhesive polymers in designing a tunable drug delivery system. Langmuir 30, 8580–8591. PubMed
Singh B, Sharma V, 2014b. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr. Polym. 101, 928–940. PubMed
Singh BN, Panda NN, Pramanik K, 2016. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. Int. J. Biol. Macromol. 87, 201–207. PubMed
Singh DK, Verma DK, Singh Y, Hasan SH, 2017. Preparation of CuO nanoparticles using Tamarindus indica pulp extract for removal of As(III): Optimization of adsorption process by ANN-GA. J. Environ. Chem. Eng. 5, 1302–1318.
Singh V, Kumari P, Pandey S, Narayan T, 2009. Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum. Bioresour. Technol. 100, 1977–1982. PubMed
Sokolsky-Papkov M, Domb AJ, Golenser J, 2006. Impact of aldehyde content on amphotericin B - Dextran imine conjugate toxicity. Biomacromolecules 7, 1529–1535. PubMed
Song JE, Phenrat T, Marinakos S, Xiao Y, Liu J, Wiesner MR, Tilton RD, Lowry GV, 2011. Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 45, 5988–5995. PubMed
Song JY, Jang H-K, Kim BS, 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 44, 1133–1138.
Sousa AMM, Souza HKS, Uknalis J, Liu SC, Gonçalves MP, Liu L, 2015a. Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydr. Polym. 115, 348–355. PubMed
Sousa AMM, Souza HKS, Uknalis J, Liu SC, Gonçalves MP, Liu LS, 2015b. Improving agar electrospinnability with choline-based deep eutectic solvents. Int. J. Biol. Macromol. 80, 139–148. PubMed
Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KHC, Ramakrishna S, 2015. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 44, 790–814. PubMed
Stephen AM, Phillips GO, Williams PA, 2006. Food polysaccharides and their applications. CRC/Taylor & Francis.
Stevens LR, Gilmore KJ, Wallace GG, in het Panhuis M, 2016. Tissue engineering with gellan gum. Biomater. Sci. 4, 1276–1290. PubMed
Stone SA, Gosavi P, Athauda TJ, Ozer RR, 2013. In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater. Lett. 112, 32–35.
Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S, 2014. Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv. 4, 24014–24019.
Takei T, Sato M, Ijima H, Kawakami K, 2010. In Situ Gellable Oxidized Citrus Pectin for Localized Delivery of Anticancer Drugs and Prevention of Homotypic Cancer Cell Aggregation. Biomacromolecules 11, 3525–3530. PubMed
Teo WE, Ramakrishna S, 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89–R106. PubMed
Thakkar KN, Mhatre SS, Parikh RY, 2010. Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnology, Biol. Med. 6, 257–262. PubMed
Thavasi V, Singh G, Ramakrishna S, 2008. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 1, 205–221.
Thekkae Padil VV, Černík M, 2013. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine 8, 889–898. PubMed PMC
Thomas V, Yallapu MM, Sreedhar B, Bajpai SK, 2007. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 315, 389–395. PubMed
Thompson CJ, Chase GG, Yarin AL, Reneker DH, 2007. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer (Guildf). 48, 6913–6922.
Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y, 2011. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr. Polym. 83, 743–748.
Tischer CA, Gorin PAJ, Iacomini M, 2002. The free reducing oligosaccharides of gum arabic: aids for structural assignments in the polysaccharide. Carbohydr. Polym. 47, 151–158.
Tischer CA, Iacomini M, Gorin PAJ, 2002a. Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer). Carbohydr. Res. 337, 1647–1655. PubMed
Tischer CA, Iacomini M, Wagner R, Gorin PA., 2002b. New structural features of the polysaccharide from gum ghatti (Anogeissus latifola). Carbohydr. Res. 337, 2205–2210. PubMed
Torres‐Giner S, Ocio MJ, Lagaron JM, 2008. Development of Active Antimicrobial Fiber‐Based Chitosan Polysaccharide Nanostructures using Electrospinning. Eng. Life Sci. 8, 303–314.
Toskas G, Hund R-D, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V, 2011. Nanofibers based on polysaccharides from the green seaweed Ulva Rigida. Carbohydr. Polym. 84, 1093–1102.
Tsai RY, Kuo TY, Hung SC, Lin CM, Hsien TY, Wang DM, Hsieh HJ, 2015. Use of gum arabic to improve the fabrication of chitosan-gelatin-based nanofibers for tissue engineering. Carbohydr. Polym. 115, 525–532. PubMed
Tsui MTK, Cheung KC, Tam NFY, Wong MH, 2006. A comparative study on metal sorption by brown seaweed. Chemosphere 65, 51–57. PubMed
Tuovinen LM, Peltonen SH, Suortti TM, Crowther NJ, Elomaa MA, Järvinen KP, 2002. Enzymatic degradation of and bovine serum albumin release from starch-acetate films. Biomacromolecules 3, 284–290. PubMed
Vaghela C, Kulkarni M, Karve M, Aiyer R, Haram S, 2014. Agarose–guar gum assisted synthesis of processable polyaniline composite: morphology and electro-responsive characteristics. RSC Adv. 4, 59716–59725.
Varma AJ, Deshpande SV, Kennedy JF, 2004. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 55, 77–93.
Varma RS, 2016. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem. Eng. 4, 5866–5878. PubMed PMC
Varma RS, 2014. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustain. Chem. Process. 2, 1–8.
Vashist A, Vashist A, Gupta YK, Ahmad S, 2014. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B 2, 147–166. PubMed
Vashisth P, Nikhil K, Roy P, Pruthi PA, Singh RP, Pruthi V, 2016. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization. Carbohydr. Polym. 136, 851–859. PubMed
Vashisth P, Pruthi PA, Singh RP, Pruthi V, 2014. Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydr. Polym. 109, 16–21. PubMed
Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V, 2017. Ofloxacin loaded gellan/PVA nanofibers - Synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater. Sci. Eng. C 71, 611–619. PubMed
Vegi GMN, Sistla R, Srinivasan P, Beedu SR, Khar RK, Diwan PV, 2009. Emulsifying properties of gum kondagogu ( Cochlospermum gossypium), a natural biopolymer. J. Sci. Food Agric. 89, 1271–1276.
Ventura MG, Paninho AI, Nunes AVM, Fonseca IM, Branco LC, 2015. Biocompatible locust bean gum mesoporous matrices prepared by ionic liquids and a scCO 2 sustainable system. RSC Adv. 5, 107700–107706.
Venugopal J, Ramakrishna S, 2005. Applications of polymer nanofibers in biomedicine and biotechnology. Appl. Biochem. Biotechnol. 125, 147–158. PubMed
Verbeken D, Dierckx S, Dewettinck K, 2003. Exudate gums: occurrence, production, and applications. Appl. Microbiol. Biotechnol. 63, 10–21. PubMed
Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV, 2006. A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 341, 2012–2018. PubMed
Vigneswaran S, Unesco, 2009. Water and wastewater treatment technologies ; Vol. 1. EOLSS Publ.
Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB, 2011a. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surfaces B Biointerfaces 83, 291–298. PubMed
Vinod VTP, Sashidhar RB, Sarma VUM, Vijaya Saradhi UVR, 2008a. Compositional Analysis and Rheological Properties of Gum Kondagogu (Cochlospermum gossypium): A Tree Gum from India. J. Agric. Food Chem. 56, 2199–2207. PubMed
Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, Rao TN, Raviprasad P, 2011b. Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): A natural hydrocolloid. Desalination 272, 270–277.
Vinod VTP, Sashidhar RB, Sreedhar B, Rama Rao B, Nageswara Rao T, Abraham JT, 2009. Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohydr. Polym. 78, 894–901.
Vinod VTP, Sashidhar RB, Sukumar AA, 2010a. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surfaces B Biointerfaces 75, 490–495. PubMed
Vinod VTP, Sashidhar RB, Suresh KI, Rama Rao B, Vijaya Saradhi UVR, Prabhakar Rao T, 2008b. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 22, 899–915.
Vinod VTP, Sashidhar RBB, Sarma VUMUM, Raju SS, 2010. Comparative amino acid and fatty acid compositions of edible gums kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem. 123, 57–62.
Vinod VTP, Sashidhar RBB, Sreedhar B, 2010b. Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J. Hazard. Mater. 178, 851–860. PubMed
Virkutyte J, Varma RS, 2011. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2, 837–846.
Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ, 2006. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7, 415–418. PubMed PMC
Volesky B, 2007. Biosorption and me. Water Res. 41, 4017–4029. PubMed
Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD, 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 330, 44–62.
Wang AJ, Liao QC, Feng JJ, Zhang PP, Li AQ, Wang JJ, 2012. Apple pectin-mediated green synthesis of hollow double-caged peanut-like ZnO hierarchical superstructures and photocatalytic applications. CrystEngComm 14, 256–263.
Wang H-S, Fu G-D, Li X-S, 2009. Functional Polymeric Nanofibers from Electrospinning. Recent Pat. Nanotechnol. 3, 21–31. PubMed
Wang H, Halas NJ, 2008. Mesoscopic Au “Meatball” Particles. Adv. Mater. 20, 820–825.
Wang H, Zhang Y, Shao H, Hu X, 2005. Electrospun ultra-fine silk fibroin fibers from aqueous solutions. J. Mater. Sci. 40, 5359–5363.
Wang J, Pan K, He Q, Cao B, 2013. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 244–245, 121–129. PubMed
Wang L, Imura M, Yamauchi Y, 2012a. Tailored synthesis of various Au nanoarchitectures with branched shapes. CrystEngComm 14, 7594–7599.
Wang L, Liu C-H, Nemoto Y, Fukata N, Wu KC-W, Yamauchi Y, 2012b. Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules. RSC Adv. 2, 4608–4611.
Webb K, Hlady V, Tresco PA, 1998. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 41, 422–430. PubMed PMC
Wei J, Wang J, Su S, Wang S, Qiu J, Zhang Z, Christopher G, Ning F, Cong W, 2015. 3D printing of an extremely tough hydrogel. RSC Adv. 5, 81324–81329.
Weiping W, 2000. Tragacanth and karaya., in: Handbook of Hydrocolloids. Woodhead Publishing Ltd, pp. 231–246.
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H, 2017. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 65, 9161–9179. PubMed
Whistler RL, BeMiller JN, 1993. Industrial gums : polysaccharides and their derivatives. Academic Press.
Williams PA, Kean T, Thanou M, 2011. Renewable Resources for Functional Polymers and Biomaterials, RSC Polymer Chemistry Series. Royal Society of Chemistry, Cambridge: 10.1039/9781849733519 DOI
Woehl MA, Ono L, Riegel Vidotti IC, Wypych F, Schreiner WH, Sierakowski MR, 2014. Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. J. Mater. Chem. B 2, 7034–7044. PubMed
Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T, 2010. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J. Food Eng. 98, 370–376.
Wu C-CC, Chen D-HH, 2012. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res. Lett. 7, 317. PubMed PMC
Xhanari K, Finšgar M, Knez Hrnčič M, Maver U, Knez Ž, Seiti B, 2017. Green corrosion inhibitors for aluminium and its alloys: a review. RSC Adv. 7, 27299–27330.
Xu L, Sitinamaluwa H, Li H, Qiu J, Wang Y, Yan C, Li H, Yuan S, Zhang S, 2017. Low cost and green preparation process for α-Fe 2 O 3 @gum arabic electrode for high performance sodium ion batteries. J. Mater. Chem. A 5, 2102–2109.
Xue Z, Zhang W, Yan M, Liu J, Wang B, Xia Y, 2017. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant carrageenan fiber. RSC Adv. 7, 25253–25264. 10.1039/C7RA01076A DOI
Yan G, Viraraghavan T, 2001. Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour. Technol. 78, 243–249. PubMed
Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R, 2012. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J. Hazard. Mater. 229–230, 371–80. PubMed
Yang H, Gao PF, Wu WB, Yang XX, Zeng QL, Li C, Huang CZ, 2014. Antibacterials loaded electrospun composite nanofibers: release profile and sustained antibacterial efficacy. Polym. Chem. 5, 1965–1975.
Yang J, Pan J, 2012. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater. 60, 4753–4758.
Yoon K, Hsiao BS, Chu B, 2008. Functional nanofibers for environmental applications. J. Mater. Chem. 18, 5326–5334.
Yu JH, Fridrikh SV, Rutledge GC, 2006. The role of elasticity in the formation of electrospun fibers. Polymer (Guildf). 47, 4789–4797.
Zarekhalili Z, Bahrami SH, Ranjbar-Mohammadi M, Milan PB, 2017. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Int. J. Biol. Macromol. 94, 679–690. PubMed
Zhang D, Chen L, Zang C, Chen Y, Lin H, 2013. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr. Polym. 92, 2088–2094. PubMed
Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F, 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146. PubMed
Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, Chen X, Wang C, 2014. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int. J. Biol. Macromol. 68, 92–97. PubMed
Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z, 2014. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surfaces A Physicochem. Eng. Asp. 444, 180–188.
Zheng K, Setyawati MI, Leong DT, Xie J, 2018. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357, 1–17.
Zhou K, Kang M, He X, Hong Z, Huang Z, Wei M, 2017. A multi-functional gum arabic binder for NiFe 2 O 4 nanotube anodes enabling excellent Li/Na-ion storage performance. J. Mater. Chem. A 5, 18138–18147.
Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W, 2013. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int. J. Biol. Macromol. 53, 88–92. PubMed
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M, 2017. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 96, 282–301. PubMed
Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications
Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role
Recent Advances in the Nanocatalysts-assisted NaBH4 Reduction of Nitroaromatics in water