Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. STATEMENT OF SIGNIFICANCE: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models.
- MeSH
- hepatocyty * metabolismus MeSH
- hydrogely metabolismus MeSH
- játra * MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.
- MeSH
- akrylové pryskyřice chemie MeSH
- biosenzitivní techniky metody MeSH
- fluorescence MeSH
- hydrogely chemie metabolismus MeSH
- imunoglobulin G analýza imunologie MeSH
- infekce virem Epsteina-Barrové diagnóza imunologie metabolismus virologie MeSH
- lidé MeSH
- peptidové fragmenty imunologie metabolismus MeSH
- polymery chemie MeSH
- virus Epsteinův-Barrové - jaderné antigeny imunologie MeSH
- virus Epsteinův-Barrové imunologie izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
- MeSH
- antiinfekční látky chemie metabolismus MeSH
- biodegradace MeSH
- biomedicínské technologie MeSH
- biosenzitivní techniky MeSH
- hydrogely metabolismus MeSH
- nanostruktury MeSH
- nanotechnologie * MeSH
- nanovlákna chemie MeSH
- polysacharidy metabolismus MeSH
- prospektivní studie MeSH
- rostlinné exsudáty chemie metabolismus MeSH
- rostlinné gumy chemie metabolismus MeSH
- stromy chemie metabolismus MeSH
- technologie zelené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Immunocompatibility of gelatin-based hydrogels to be applied as implant coatings for local regenerative treatment has been studied. First, the bio- and immuno-acceptability of the methacrylamide-modified gelatin hydrogels per se was screened. The results indicated that the hydrogels support cell growth. Metabolic activity of normal cells and permanent cell lines representing various cell types (endothelial, epithelial, fibroblast, and monocyte/macrophage) cultivated on the gelatin hydrogels was moderately lower compared to cells cultivated on tissue culture plastic. The cells cultivated on the hydrogels produced identical cytokines as the control cells although at lower levels. Importantly, no inflammatory activity, measured by nitric oxide and pro-inflammatory cytokine (IL-1α, IL-6, and TNFα) production, was observed in peritoneal cells and monocyte/macrophage RAW 264.7 cell line cultivated on the hydrogels. Finally, polyimide (PI) implantable membranes were surface-modified with gelatin hydrogels and screened for their in vivo immunocompatibility. Their histological examination performed after subcutaneous implantation in mice produced a sound proof of immunoacceptability. Normal tissue repair, mild cellular infiltration and edema mainly induced by the surgery were observed after 2 and 6 days. No adverse tissue responses were induced by the implants. Analysis performed after 4 and 9 weeks indicated areas of foreign body granuloma without formation of a fibrous capsule.
- MeSH
- akrylamidy chemie imunologie MeSH
- biokompatibilní materiály chemie metabolismus MeSH
- buněčné linie MeSH
- cytokiny imunologie MeSH
- fibroblasty cytologie imunologie MeSH
- hydrogely chemie metabolismus MeSH
- lidé MeSH
- makrofágy cytologie imunologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proliferace buněk MeSH
- protézy a implantáty MeSH
- regenerativní lékařství MeSH
- želatina chemie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH