-
Je něco špatně v tomto záznamu ?
Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields
VVT. Padil, S. Wacławek, M. Černík, RS. Varma,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
Grantová podpora
EPA999999
Intramural EPA - United States
- MeSH
- antiinfekční látky chemie metabolismus MeSH
- biodegradace MeSH
- biomedicínské technologie MeSH
- biosenzitivní techniky MeSH
- hydrogely metabolismus MeSH
- nanostruktury MeSH
- nanotechnologie * MeSH
- nanovlákna chemie MeSH
- polysacharidy metabolismus MeSH
- prospektivní studie MeSH
- rostlinné exsudáty chemie metabolismus MeSH
- rostlinné gumy chemie metabolismus MeSH
- stromy chemie metabolismus MeSH
- technologie zelené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028243
- 003
- CZ-PrNML
- 005
- 20190820094812.0
- 007
- ta
- 008
- 190813s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biotechadv.2018.08.008 $2 doi
- 035 __
- $a (PubMed)30165173
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Padil, Vinod V T $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic. Electronic address: vinod.padil@tul.cz.
- 245 10
- $a Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields / $c VVT. Padil, S. Wacławek, M. Černík, RS. Varma,
- 520 9_
- $a The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
- 650 _2
- $a antiinfekční látky $x chemie $x metabolismus $7 D000890
- 650 _2
- $a biodegradace $7 D001673
- 650 _2
- $a biomedicínské technologie $7 D020811
- 650 _2
- $a biosenzitivní techniky $7 D015374
- 650 _2
- $a technologie zelené chemie $7 D055772
- 650 _2
- $a hydrogely $x metabolismus $7 D020100
- 650 _2
- $a nanovlákna $x chemie $7 D057139
- 650 _2
- $a nanostruktury $7 D049329
- 650 12
- $a nanotechnologie $7 D036103
- 650 _2
- $a rostlinné exsudáty $x chemie $x metabolismus $7 D053147
- 650 _2
- $a rostlinné gumy $x chemie $x metabolismus $7 D053149
- 650 _2
- $a polysacharidy $x metabolismus $7 D011134
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a stromy $x chemie $x metabolismus $7 D014197
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Wacławek, Stanisław $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
- 700 1_
- $a Černík, Miroslav $u Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic. Electronic address: miroslav.cernik@tul.cz.
- 700 1_
- $a Varma, Rajender S $u Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic. Electronic address: Varma.Rajender@epa.gov.
- 773 0_
- $w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 36, č. 7 (2018), s. 1984-2016
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30165173 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190820095048 $b ABA008
- 999 __
- $a ok $b bmc $g 1433392 $s 1066703
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 36 $c 7 $d 1984-2016 $e 20180827 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
- GRA __
- $a EPA999999 $p Intramural EPA $2 United States
- LZP __
- $a Pubmed-20190813