• Je něco špatně v tomto záznamu ?

Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins

ME. Morrow, MT. Morgan, M. Clerici, K. Growkova, M. Yan, D. Komander, TK. Sixma, M. Simicek, C. Wolberger,

. 2018 ; 19 (10) : . [pub] 20180827

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028248

Grantová podpora
309756 European Research Council - International
R01 GM095822 NIGMS NIH HHS - United States
R01 GM109102 NIGMS NIH HHS - United States
MC_U105192732 Medical Research Council - United Kingdom
U105192732 Medical Research Council - United Kingdom
P41 GM103393 NIGMS NIH HHS - United States

E-zdroje Online Plný text

NLK Free Medical Journals od 2000 do Před 1 rokem
PubMed Central od 2000
Europe PubMed Central od 2000 do Před 1 rokem
Open Access Digital Library od 2000-07-01
Medline Complete (EBSCOhost) od 2000-07-01 do Před 1 rokem
Wiley Free Content od 2000 do Před 1 rokem

A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild-type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight-binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30-fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028248
003      
CZ-PrNML
005      
20190820100456.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.15252/embr.201745680 $2 doi
035    __
$a (PubMed)30150323
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Morrow, Marie E $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
245    10
$a Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins / $c ME. Morrow, MT. Morgan, M. Clerici, K. Growkova, M. Yan, D. Komander, TK. Sixma, M. Simicek, C. Wolberger,
520    9_
$a A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild-type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight-binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30-fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
650    _2
$a alanin $x genetika $7 D000409
650    _2
$a substituce aminokyselin $x genetika $7 D019943
650    _2
$a transportní proteiny $x chemie $x genetika $7 D002352
650    _2
$a katalýza $7 D002384
650    _2
$a cystein $x genetika $7 D003545
650    _2
$a deubikvitinasy $x chemie $x genetika $7 D000072017
650    _2
$a endopeptidasy $x chemie $x genetika $7 D010450
650    _2
$a lidé $7 D006801
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a konformace proteinů $7 D011487
650    _2
$a Saccharomyces cerevisiae $x genetika $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x chemie $x genetika $7 D029701
650    _2
$a trans-aktivátory $x chemie $x genetika $7 D015534
650    _2
$a ubikvitin $x chemie $x genetika $7 D025801
650    _2
$a specifické proteázy ubikvitinu $x chemie $x genetika $7 D064570
650    _2
$a ubikvitinace $x genetika $7 D054875
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Morgan, Michael T $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
700    1_
$a Clerici, Marcello $u Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
700    1_
$a Growkova, Katerina $u Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Yan, Ming $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
700    1_
$a Komander, David $u Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
700    1_
$a Sixma, Titia K $u Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
700    1_
$a Simicek, Michal $u Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic. Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
700    1_
$a Wolberger, Cynthia $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA cwolberg@jhmi.edu.
773    0_
$w MED00006590 $t EMBO reports $x 1469-3178 $g Roč. 19, č. 10 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30150323 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190820100731 $b ABA008
999    __
$a ok $b bmc $g 1433397 $s 1066708
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 19 $c 10 $e 20180827 $i 1469-3178 $m Embo reports $n EMBO Rep $x MED00006590
GRA    __
$a 309756 $p European Research Council $2 International
GRA    __
$a R01 GM095822 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM109102 $p NIGMS NIH HHS $2 United States
GRA    __
$a MC_U105192732 $p Medical Research Council $2 United Kingdom
GRA    __
$a U105192732 $p Medical Research Council $2 United Kingdom
GRA    __
$a P41 GM103393 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...