• Je něco špatně v tomto záznamu ?

Dynamic action of the Sec machinery during initiation, protein translocation and termination

T. Fessl, D. Watkins, P. Oatley, WJ. Allen, RA. Corey, J. Horne, SA. Baldwin, SE. Radford, I. Collinson, R. Tuma,

. 2018 ; 7 (-) : . [pub] 20180607

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028395

Grantová podpora
BB/M003604/I Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011151/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BBSRC South West Bioscience Doctoral Training Partnership Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I006737/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I008675/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N017307/1 Biotechnology and Biological Sciences Research Council - United Kingdom
104632 Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
BB/N015126/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028395
003      
CZ-PrNML
005      
20190819120933.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.35112 $2 doi
035    __
$a (PubMed)29877797
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Fessl, Tomas $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom. Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
245    10
$a Dynamic action of the Sec machinery during initiation, protein translocation and termination / $c T. Fessl, D. Watkins, P. Oatley, WJ. Allen, RA. Corey, J. Horne, SA. Baldwin, SE. Radford, I. Collinson, R. Tuma,
520    9_
$a Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.
650    _2
$a adenosintrifosfatasy $x chemie $x genetika $x metabolismus $7 D000251
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    _2
$a Escherichia coli $x genetika $x metabolismus $7 D004926
650    _2
$a proteiny z Escherichia coli $x chemie $x genetika $x metabolismus $7 D029968
650    _2
$a hydrolýza $7 D006868
650    _2
$a fluorescenční mikroskopie $x metody $7 D008856
650    _2
$a molekulární modely $7 D008958
650    _2
$a mutace $7 D009154
650    _2
$a konformace proteinů $7 D011487
650    _2
$a proteiny - lokalizační signály $x genetika $7 D021382
650    _2
$a transport proteinů $7 D021381
650    12
$a protonmotorická síla $7 D018892
650    _2
$a translokační kanály SEC $x chemie $x genetika $x metabolismus $7 D000069816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Watkins, Daniel $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Oatley, Peter $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
700    1_
$a Allen, William John $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Corey, Robin Adam $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Horne, Jim $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
700    1_
$a Baldwin, Steve A $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
700    1_
$a Radford, Sheena E $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
700    1_
$a Collinson, Ian $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Tuma, Roman $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom. School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom. Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 7, č. - (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29877797 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190819121207 $b ABA008
999    __
$a ok $b bmc $g 1433544 $s 1066855
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 7 $c - $e 20180607 $i 2050-084X $m eLife $n eLife $x MED00188753
GRA    __
$a BB/M003604/I $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BB/M011151/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BBSRC South West Bioscience Doctoral Training Partnership $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BB/I006737/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BB/I008675/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BB/N017307/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 104632 $p Wellcome Trust $2 United Kingdom
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a BB/N015126/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace