-
Je něco špatně v tomto záznamu ?
Photomontage detection using steganography technique based on a neural network
R. Jarusek, E. Volna, M. Kotyrba,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- databáze faktografické normy MeSH
- fotografování metody normy MeSH
- lidé MeSH
- neuronové sítě * MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This article presents a steganographic method StegoNN based on neural networks. The method is able to identify a photomontage from presented signed images. Unlike other academic approaches using neural networks primarily as classifiers, the StegoNN method uses the characteristics of neural networks to create suitable attributes which are then necessary for subsequent detection of modified photographs. This also results in a fact that if an image is signed by this technique, the detection of modifications does not need any external data (database of non-modified originals) and the quality of the signature in various parts of the image also serves to identify modified (corrupted) parts of the image. The experimental study was performed on photographs from CoMoFoD Database and its results were compared with other approaches using this database based on standard metrics. The performed study showed the ability of the StegoNN method to detect corrupted parts of an image and to mark places which have been most probably image-manipulated. The usage of this method is suitable for reportage photography, but in general, for all cases where verification (provability) of authenticity and veracity of the presented image are required.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034585
- 003
- CZ-PrNML
- 005
- 20191017085034.0
- 007
- ta
- 008
- 191007s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2019.03.015 $2 doi
- 035 __
- $a (PubMed)31063925
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jarusek, Robert $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: robert.jarusek@osu.cz.
- 245 10
- $a Photomontage detection using steganography technique based on a neural network / $c R. Jarusek, E. Volna, M. Kotyrba,
- 520 9_
- $a This article presents a steganographic method StegoNN based on neural networks. The method is able to identify a photomontage from presented signed images. Unlike other academic approaches using neural networks primarily as classifiers, the StegoNN method uses the characteristics of neural networks to create suitable attributes which are then necessary for subsequent detection of modified photographs. This also results in a fact that if an image is signed by this technique, the detection of modifications does not need any external data (database of non-modified originals) and the quality of the signature in various parts of the image also serves to identify modified (corrupted) parts of the image. The experimental study was performed on photographs from CoMoFoD Database and its results were compared with other approaches using this database based on standard metrics. The performed study showed the ability of the StegoNN method to detect corrupted parts of an image and to mark places which have been most probably image-manipulated. The usage of this method is suitable for reportage photography, but in general, for all cases where verification (provability) of authenticity and veracity of the presented image are required.
- 650 _2
- $a databáze faktografické $x normy $7 D016208
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $x metody $x normy $7 D010363
- 650 _2
- $a fotografování $x metody $x normy $7 D010781
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Volna, Eva $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: eva.volna@osu.cz.
- 700 1_
- $a Kotyrba, Martin $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: martin.kotyrba@osu.cz.
- 773 0_
- $w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 116, č. - (2019), s. 150-165
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31063925 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191017085502 $b ABA008
- 999 __
- $a ok $b bmc $g 1451245 $s 1073135
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 116 $c - $d 150-165 $e 20190417 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20191007