• Je něco špatně v tomto záznamu ?

Photomontage detection using steganography technique based on a neural network

R. Jarusek, E. Volna, M. Kotyrba,

. 2019 ; 116 (-) : 150-165. [pub] 20190417

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034585

This article presents a steganographic method StegoNN based on neural networks. The method is able to identify a photomontage from presented signed images. Unlike other academic approaches using neural networks primarily as classifiers, the StegoNN method uses the characteristics of neural networks to create suitable attributes which are then necessary for subsequent detection of modified photographs. This also results in a fact that if an image is signed by this technique, the detection of modifications does not need any external data (database of non-modified originals) and the quality of the signature in various parts of the image also serves to identify modified (corrupted) parts of the image. The experimental study was performed on photographs from CoMoFoD Database and its results were compared with other approaches using this database based on standard metrics. The performed study showed the ability of the StegoNN method to detect corrupted parts of an image and to mark places which have been most probably image-manipulated. The usage of this method is suitable for reportage photography, but in general, for all cases where verification (provability) of authenticity and veracity of the presented image are required.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034585
003      
CZ-PrNML
005      
20191017085034.0
007      
ta
008      
191007s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2019.03.015 $2 doi
035    __
$a (PubMed)31063925
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Jarusek, Robert $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: robert.jarusek@osu.cz.
245    10
$a Photomontage detection using steganography technique based on a neural network / $c R. Jarusek, E. Volna, M. Kotyrba,
520    9_
$a This article presents a steganographic method StegoNN based on neural networks. The method is able to identify a photomontage from presented signed images. Unlike other academic approaches using neural networks primarily as classifiers, the StegoNN method uses the characteristics of neural networks to create suitable attributes which are then necessary for subsequent detection of modified photographs. This also results in a fact that if an image is signed by this technique, the detection of modifications does not need any external data (database of non-modified originals) and the quality of the signature in various parts of the image also serves to identify modified (corrupted) parts of the image. The experimental study was performed on photographs from CoMoFoD Database and its results were compared with other approaches using this database based on standard metrics. The performed study showed the ability of the StegoNN method to detect corrupted parts of an image and to mark places which have been most probably image-manipulated. The usage of this method is suitable for reportage photography, but in general, for all cases where verification (provability) of authenticity and veracity of the presented image are required.
650    _2
$a databáze faktografické $x normy $7 D016208
650    _2
$a lidé $7 D006801
650    12
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $x metody $x normy $7 D010363
650    _2
$a fotografování $x metody $x normy $7 D010781
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
700    1_
$a Volna, Eva $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: eva.volna@osu.cz.
700    1_
$a Kotyrba, Martin $u University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address: martin.kotyrba@osu.cz.
773    0_
$w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 116, č. - (2019), s. 150-165
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31063925 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191017085502 $b ABA008
999    __
$a ok $b bmc $g 1451245 $s 1073135
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 116 $c - $d 150-165 $e 20190417 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...