-
Something wrong with this record ?
Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications
J. Sogorkova, V. Zapotocky, M. Cepa, V. Stepankova, H. Vagnerova, J. Batova, M. Pospisilova, J. Betak, K. Nesporova, M. Hermannova, D. Daro, G. Duffy, V. Velebny,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29377555
DOI
10.1002/jbm.a.36353
Knihovny.cz E-resources
- MeSH
- Biocompatible Materials chemistry MeSH
- Cell Adhesion MeSH
- Cell Line MeSH
- Fibronectins chemistry MeSH
- Stem Cells cytology MeSH
- Cells, Cultured MeSH
- Hyaluronic Acid chemistry MeSH
- Palmitic Acid chemistry MeSH
- Humans MeSH
- Surface Properties MeSH
- Cell Proliferation MeSH
- Tissue Engineering MeSH
- Tissue Scaffolds chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035428
- 003
- CZ-PrNML
- 005
- 20191014110820.0
- 007
- ta
- 008
- 191007s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/jbm.a.36353 $2 doi
- 035 __
- $a (PubMed)29377555
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sogorkova, Jana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 245 10
- $a Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications / $c J. Sogorkova, V. Zapotocky, M. Cepa, V. Stepankova, H. Vagnerova, J. Batova, M. Pospisilova, J. Betak, K. Nesporova, M. Hermannova, D. Daro, G. Duffy, V. Velebny,
- 520 9_
- $a Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
- 650 _2
- $a biokompatibilní materiály $x chemie $7 D001672
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a fibronektiny $x chemie $7 D005353
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kyselina hyaluronová $x chemie $7 D006820
- 650 _2
- $a kyselina palmitová $x chemie $7 D019308
- 650 _2
- $a kmenové buňky $x cytologie $7 D013234
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 650 _2
- $a tkáňové inženýrství $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zapotocky, Vojtech $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Cepa, Martin $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Stepankova, Veronika $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Vagnerova, Hana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Batova, Jana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Pospisilova, Martina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Betak, Jiri $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Nesporova, Kristina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Hermannova, Martina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 700 1_
- $a Daro, Dorothée $u Celyad, Rue Edouard Belin 2, Mont-Saint-Guibert, 1435, Belgium.
- 700 1_
- $a Duffy, Garry $u Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland. Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland. Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland.
- 700 1_
- $a Velebny, Vladimir $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
- 773 0_
- $w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 106, č. 6 (2018), s. 1488-1499
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29377555 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191014111244 $b ABA008
- 999 __
- $a ok $b bmc $g 1452088 $s 1073978
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 106 $c 6 $d 1488-1499 $e 20180206 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
- LZP __
- $a Pubmed-20191007