Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications

J. Sogorkova, V. Zapotocky, M. Cepa, V. Stepankova, H. Vagnerova, J. Batova, M. Pospisilova, J. Betak, K. Nesporova, M. Hermannova, D. Daro, G. Duffy, V. Velebny,

. 2018 ; 106 (6) : 1488-1499. [pub] 20180206

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035428
003      
CZ-PrNML
005      
20191014110820.0
007      
ta
008      
191007s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.a.36353 $2 doi
035    __
$a (PubMed)29377555
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sogorkova, Jana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
245    10
$a Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications / $c J. Sogorkova, V. Zapotocky, M. Cepa, V. Stepankova, H. Vagnerova, J. Batova, M. Pospisilova, J. Betak, K. Nesporova, M. Hermannova, D. Daro, G. Duffy, V. Velebny,
520    9_
$a Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
650    _2
$a biokompatibilní materiály $x chemie $7 D001672
650    _2
$a buněčná adheze $7 D002448
650    _2
$a buněčné linie $7 D002460
650    _2
$a proliferace buněk $7 D049109
650    _2
$a kultivované buňky $7 D002478
650    _2
$a fibronektiny $x chemie $7 D005353
650    _2
$a lidé $7 D006801
650    _2
$a kyselina hyaluronová $x chemie $7 D006820
650    _2
$a kyselina palmitová $x chemie $7 D019308
650    _2
$a kmenové buňky $x cytologie $7 D013234
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a tkáňové inženýrství $7 D023822
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zapotocky, Vojtech $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Cepa, Martin $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Stepankova, Veronika $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Vagnerova, Hana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Batova, Jana $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Pospisilova, Martina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Betak, Jiri $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Nesporova, Kristina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Hermannova, Martina $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
700    1_
$a Daro, Dorothée $u Celyad, Rue Edouard Belin 2, Mont-Saint-Guibert, 1435, Belgium.
700    1_
$a Duffy, Garry $u Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland. Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland. Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland.
700    1_
$a Velebny, Vladimir $u Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic.
773    0_
$w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 106, č. 6 (2018), s. 1488-1499
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29377555 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014111244 $b ABA008
999    __
$a ok $b bmc $g 1452088 $s 1073978
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 106 $c 6 $d 1488-1499 $e 20180206 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...