-
Something wrong with this record ?
Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity
A. de Pierrefeu, T. Löfstedt, C. Laidi, F. Hadj-Selem, J. Bourgin, T. Hajek, F. Spaniel, M. Kolenic, P. Ciuciu, N. Hamdani, M. Leboyer, T. Fovet, R. Jardri, J. Houenou, E. Duchesnay,
Language English Country United States
Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't
Grant support
NV16-32696A
MZ0
CEP Register
Digital library NLK
Full text - Article
NLK
Medline Complete (EBSCOhost)
from 2000-01-01 to 1 year ago
PubMed
30242828
DOI
10.1111/acps.12964
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging standards MeSH
- Image Processing, Computer-Assisted standards MeSH
- Reproducibility of Results MeSH
- Schizophrenia diagnostic imaging pathology physiopathology MeSH
- Gray Matter diagnostic imaging pathology MeSH
- Sensitivity and Specificity MeSH
- Machine Learning * MeSH
- Severity of Illness Index MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
Department of Radiation Sciences Umeå University Umeå Sweden
Energy Transition Institute VeDeCoM Versailles France
National Institute of Mental Health Klecany Czech Republic
NeuroSpin CEA Gif sur Yvette France
NeuroSpin CEA Gif sur Yvette France INRIA CEA Parietal team University of Paris Saclay Lille France
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045228
- 003
- CZ-PrNML
- 005
- 20220509175653.0
- 007
- ta
- 008
- 200109s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/acps.12964 $2 doi
- 035 __
- $a (PubMed)30242828
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a de Pierrefeu, A $u NeuroSpin, CEA, Gif-sur-Yvette, France.
- 245 10
- $a Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity / $c A. de Pierrefeu, T. Löfstedt, C. Laidi, F. Hadj-Selem, J. Bourgin, T. Hajek, F. Spaniel, M. Kolenic, P. Ciuciu, N. Hamdani, M. Leboyer, T. Fovet, R. Jardri, J. Houenou, E. Duchesnay,
- 520 9_
- $a OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a šedá hmota $x diagnostické zobrazování $x patologie $7 D066128
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x normy $7 D007091
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a magnetická rezonanční tomografie $x normy $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a schizofrenie $x diagnostické zobrazování $x patologie $x patofyziologie $7 D012559
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a stupeň závažnosti nemoci $7 D012720
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a multicentrická studie $7 D016448
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Löfstedt, T $u Department of Radiation Sciences, Umeå University, Umeå, Sweden.
- 700 1_
- $a Laidi, C $u NeuroSpin, CEA, Gif-sur-Yvette, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
- 700 1_
- $a Hadj-Selem, F $u Energy Transition Institute: VeDeCoM, Versailles, France.
- 700 1_
- $a Bourgin, J $u Department of Psychiatry, Louis-Mourier Hospital, AP-HP, Colombes, France. INSERM U894, Centre for Psychiatry and Neurosciences, Paris, France.
- 700 1_
- $a Hajek, T $u Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Spaniel, F $u National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Kolenic, M $u National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Ciuciu, P $u NeuroSpin, CEA, Gif-sur-Yvette, France. INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France.
- 700 1_
- $a Hamdani, N $u Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
- 700 1_
- $a Leboyer, M $u Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
- 700 1_
- $a Fovet, T $u Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France. Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France.
- 700 1_
- $a Jardri, R $u INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France. Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France. Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France.
- 700 1_
- $a Houenou, J $u NeuroSpin, CEA, Gif-sur-Yvette, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
- 700 1_
- $a Duchesnay, E $u NeuroSpin, CEA, Gif-sur-Yvette, France.
- 773 0_
- $w MED00009053 $t Acta psychiatrica Scandinavica $x 1600-0447 $g Roč. 138, č. 6 (2018), s. 571-580
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20220509175651 $b ABA008
- 999 __
- $a ok $b bmc $g 1483497 $s 1083901
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 138 $c 6 $d 571-580 $e 20180921 $i 1600-0447 $m Acta psychiatrica Scandinavica $n Acta Psychiatr Scand $x MED00009053
- GRA __
- $a NV16-32696A $p MZ0
- LZP __
- $a Pubmed-20200109