Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics

M. Daniel, J. Řezníčková, M. Handl, A. Iglič, V. Kralj-Iglič,

. 2018 ; 8 (1) : 10810. [pub] 20180717

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
15-33629A Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
16-14758S Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International
15-33629A Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International
NV15-33629A MZ0 CEP Register

Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045360
003      
CZ-PrNML
005      
20201113095352.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-018-28965-y $2 doi
035    __
$a (PubMed)30018296
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Daniel, Matej, $d 1978- $7 xx0029605 $u Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16600, Prague 6, Czech Republic. matej.daniel@fs.cvut.cz.
245    10
$a Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics / $c M. Daniel, J. Řezníčková, M. Handl, A. Iglič, V. Kralj-Iglič,
520    9_
$a Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.
650    _2
$a shluková analýza $7 D016000
650    _2
$a zlato $x chemie $7 D006046
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a lipidové dvojvrstvy $x chemie $7 D008051
650    _2
$a kovové nanočástice $x chemie $7 D053768
650    12
$a chemické modely $7 D008956
650    _2
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Řezníčková, Jitka $u Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16600, Prague 6, Czech Republic.
700    1_
$a Handl, Milan $u University Hospital Motol, Charles University in Prague, 150 06, Prague 5, Czech Republic. Dubai Healthcare City, Dubai, UAE.
700    1_
$a Iglič, Aleš $u Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
700    1_
$a Kralj-Iglič, Veronika $u Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 8, č. 1 (2018), s. 10810
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30018296 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20201113095349 $b ABA008
999    __
$a ok $b bmc $g 1483629 $s 1084033
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 8 $c 1 $d 10810 $e 20180717 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a 15-33629A $p Grantová Agentura České Republiky (Grant Agency of the Czech Republic) $2 International
GRA    __
$a 16-14758S $p Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) $2 International
GRA    __
$a 15-33629A $p Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) $2 International
GRA    __
$a NV15-33629A $p MZ0
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...