-
Something wrong with this record ?
Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments
M. Pastucha, Z. Farka, K. Lacina, Z. Mikušová, P. Skládal,
Language English Country Austria
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
Grant support
MUNI/A/1100/2017
Masarykova Univerzita - International
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy - International
- MeSH
- Electrochemistry methods MeSH
- Immunoassay methods MeSH
- Humans MeSH
- Magnets chemistry MeSH
- Nanoparticles chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006409
- 003
- CZ-PrNML
- 005
- 20200522103913.0
- 007
- ta
- 008
- 200511s2019 au f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00604-019-3410-0 $2 doi
- 035 __
- $a (PubMed)31037494
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a au
- 100 1_
- $a Pastucha, Matěj $u Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 245 10
- $a Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments / $c M. Pastucha, Z. Farka, K. Lacina, Z. Mikušová, P. Skládal,
- 520 9_
- $a This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a elektrochemie $x metody $7 D004563
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a imunoanalýza $x metody $7 D007118
- 650 _2
- $a magnety $x chemie $7 D059346
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Farka, Zdeněk $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Lacina, Karel $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Mikušová, Zuzana $u Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Skládal, Petr $u Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. skladal@chemi.muni.cz. Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. skladal@chemi.muni.cz.
- 773 0_
- $w MED00003357 $t Mikrochimica acta $x 1436-5073 $g Roč. 186, č. 5 (2019), s. 312
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31037494 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200522103911 $b ABA008
- 999 __
- $a ok $b bmc $g 1525267 $s 1096465
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 186 $c 5 $d 312 $e 20190429 $i 1436-5073 $m Mikrochimica acta $n Mikrochim Acta $x MED00003357
- GRA __
- $a MUNI/A/1100/2017 $p Masarykova Univerzita $2 International
- GRA __
- $a LQ1601 $p Ministerstvo Školství, Mládeže a Tělovýchovy $2 International
- LZP __
- $a Pubmed-20200511