Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Fast and accurate compensation of signal offset for T2 mapping

J. Michálek, P. Hanzlíková, T. Trinh, D. Pacík,

. 2019 ; 32 (4) : 423-436. [pub] 20190207

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006607

Grantová podpora
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy

OBJECTIVE: T2 maps are more vendor independent than other MRI protocols. Multi-echo spin-echo signal decays to a non-zero offset due to imperfect refocusing pulses and Rician noise, causing T2 overestimation by the vendor's 2-parameter algorithm. The accuracy of the T2 estimate is improved, if the non-zero offset is estimated as a third parameter. Three-parameter Levenberg-Marquardt (LM) T2 estimation takes several minutes to calculate, and it is sensitive to initial values. We aimed for a 3-parameter fitting algorithm that was comparably accurate, yet substantially faster. METHODS: Our approach gains speed by converting the 3-parameter minimisation problem into an empirically unimodal univariate problem, which is quickly minimised using the golden section line search (GS). RESULTS: To enable comparison, we propose a novel noise-masking algorithm. For clinical data, the agreement between the GS and the LM fit is excellent, yet the GS algorithm is two orders of magnitude faster. For synthetic data, the accuracy of the GS algorithm is on par with that of the LM fit, and the GS algorithm is significantly faster. The GS algorithm requires no parametrisation or initialisation by the user. DISCUSSION: The new GS T2 mapping algorithm offers a fast and much more accurate off-the-shelf replacement for the inaccurate 2-parameter fit in the vendor's software.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006607
003      
CZ-PrNML
005      
20200521212320.0
007      
ta
008      
200511s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10334-019-00737-3 $2 doi
035    __
$a (PubMed)30730022
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Michálek, Jan $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic. jan.michalek@fi.muni.cz.
245    10
$a Fast and accurate compensation of signal offset for T2 mapping / $c J. Michálek, P. Hanzlíková, T. Trinh, D. Pacík,
520    9_
$a OBJECTIVE: T2 maps are more vendor independent than other MRI protocols. Multi-echo spin-echo signal decays to a non-zero offset due to imperfect refocusing pulses and Rician noise, causing T2 overestimation by the vendor's 2-parameter algorithm. The accuracy of the T2 estimate is improved, if the non-zero offset is estimated as a third parameter. Three-parameter Levenberg-Marquardt (LM) T2 estimation takes several minutes to calculate, and it is sensitive to initial values. We aimed for a 3-parameter fitting algorithm that was comparably accurate, yet substantially faster. METHODS: Our approach gains speed by converting the 3-parameter minimisation problem into an empirically unimodal univariate problem, which is quickly minimised using the golden section line search (GS). RESULTS: To enable comparison, we propose a novel noise-masking algorithm. For clinical data, the agreement between the GS and the LM fit is excellent, yet the GS algorithm is two orders of magnitude faster. For synthetic data, the accuracy of the GS algorithm is on par with that of the LM fit, and the GS algorithm is significantly faster. The GS algorithm requires no parametrisation or initialisation by the user. DISCUSSION: The new GS T2 mapping algorithm offers a fast and much more accurate off-the-shelf replacement for the inaccurate 2-parameter fit in the vendor's software.
650    _2
$a algoritmy $7 D000465
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a metoda nejmenších čtverců $7 D016018
650    12
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a fantomy radiodiagnostické $7 D019047
650    _2
$a pravděpodobnost $7 D011336
650    _2
$a nádory prostaty $x diagnostické zobrazování $7 D011471
650    _2
$a regresní analýza $7 D012044
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a poměr signál - šum $7 D059629
650    _2
$a software $7 D012984
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hanzlíková, Pavla $u Department of Radiology, Faculty of Medicine and Dentistry, Palacky University, tř. Svobody 8, 77126, Olomouc, Czech Republic.
700    1_
$a Trinh, Tuan $u Department of Urology, Medical School, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic.
700    1_
$a Pacík, Dalibor $u Department of Urology, University Hospital Brno, Jihlavská 20, 62500, Brno, Czech Republic.
773    0_
$w MED00006146 $t Magma (New York, N.Y.) $x 1352-8661 $g Roč. 32, č. 4 (2019), s. 423-436
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30730022 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200521212317 $b ABA008
999    __
$a ok $b bmc $g 1525465 $s 1096663
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 32 $c 4 $d 423-436 $e 20190207 $i 1352-8661 $m Magma $n MAGMA $x MED00006146
GRA    __
$a LM2015062 $p Ministerstvo Školství, Mládeže a Tělovýchovy
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...