-
Je něco špatně v tomto záznamu ?
Fast and accurate compensation of signal offset for T2 mapping
J. Michálek, P. Hanzlíková, T. Trinh, D. Pacík,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy
- MeSH
- algoritmy MeSH
- časové faktory MeSH
- fantomy radiodiagnostické MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- metoda nejmenších čtverců MeSH
- nádory prostaty diagnostické zobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- poměr signál - šum MeSH
- pravděpodobnost MeSH
- regresní analýza MeSH
- reprodukovatelnost výsledků MeSH
- software MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: T2 maps are more vendor independent than other MRI protocols. Multi-echo spin-echo signal decays to a non-zero offset due to imperfect refocusing pulses and Rician noise, causing T2 overestimation by the vendor's 2-parameter algorithm. The accuracy of the T2 estimate is improved, if the non-zero offset is estimated as a third parameter. Three-parameter Levenberg-Marquardt (LM) T2 estimation takes several minutes to calculate, and it is sensitive to initial values. We aimed for a 3-parameter fitting algorithm that was comparably accurate, yet substantially faster. METHODS: Our approach gains speed by converting the 3-parameter minimisation problem into an empirically unimodal univariate problem, which is quickly minimised using the golden section line search (GS). RESULTS: To enable comparison, we propose a novel noise-masking algorithm. For clinical data, the agreement between the GS and the LM fit is excellent, yet the GS algorithm is two orders of magnitude faster. For synthetic data, the accuracy of the GS algorithm is on par with that of the LM fit, and the GS algorithm is significantly faster. The GS algorithm requires no parametrisation or initialisation by the user. DISCUSSION: The new GS T2 mapping algorithm offers a fast and much more accurate off-the-shelf replacement for the inaccurate 2-parameter fit in the vendor's software.
Department of Urology Medical School Masaryk University Jihlavská 20 62500 Brno Czech Republic
Department of Urology University Hospital Brno Jihlavská 20 62500 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006607
- 003
- CZ-PrNML
- 005
- 20200521212320.0
- 007
- ta
- 008
- 200511s2019 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10334-019-00737-3 $2 doi
- 035 __
- $a (PubMed)30730022
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Michálek, Jan $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic. jan.michalek@fi.muni.cz.
- 245 10
- $a Fast and accurate compensation of signal offset for T2 mapping / $c J. Michálek, P. Hanzlíková, T. Trinh, D. Pacík,
- 520 9_
- $a OBJECTIVE: T2 maps are more vendor independent than other MRI protocols. Multi-echo spin-echo signal decays to a non-zero offset due to imperfect refocusing pulses and Rician noise, causing T2 overestimation by the vendor's 2-parameter algorithm. The accuracy of the T2 estimate is improved, if the non-zero offset is estimated as a third parameter. Three-parameter Levenberg-Marquardt (LM) T2 estimation takes several minutes to calculate, and it is sensitive to initial values. We aimed for a 3-parameter fitting algorithm that was comparably accurate, yet substantially faster. METHODS: Our approach gains speed by converting the 3-parameter minimisation problem into an empirically unimodal univariate problem, which is quickly minimised using the golden section line search (GS). RESULTS: To enable comparison, we propose a novel noise-masking algorithm. For clinical data, the agreement between the GS and the LM fit is excellent, yet the GS algorithm is two orders of magnitude faster. For synthetic data, the accuracy of the GS algorithm is on par with that of the LM fit, and the GS algorithm is significantly faster. The GS algorithm requires no parametrisation or initialisation by the user. DISCUSSION: The new GS T2 mapping algorithm offers a fast and much more accurate off-the-shelf replacement for the inaccurate 2-parameter fit in the vendor's software.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a metoda nejmenších čtverců $7 D016018
- 650 12
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 650 _2
- $a pravděpodobnost $7 D011336
- 650 _2
- $a nádory prostaty $x diagnostické zobrazování $7 D011471
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a software $7 D012984
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hanzlíková, Pavla $u Department of Radiology, Faculty of Medicine and Dentistry, Palacky University, tř. Svobody 8, 77126, Olomouc, Czech Republic.
- 700 1_
- $a Trinh, Tuan $u Department of Urology, Medical School, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic.
- 700 1_
- $a Pacík, Dalibor $u Department of Urology, University Hospital Brno, Jihlavská 20, 62500, Brno, Czech Republic.
- 773 0_
- $w MED00006146 $t Magma (New York, N.Y.) $x 1352-8661 $g Roč. 32, č. 4 (2019), s. 423-436
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30730022 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200521212317 $b ABA008
- 999 __
- $a ok $b bmc $g 1525465 $s 1096663
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 32 $c 4 $d 423-436 $e 20190207 $i 1352-8661 $m Magma $n MAGMA $x MED00006146
- GRA __
- $a LM2015062 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- LZP __
- $a Pubmed-20200511