-
Something wrong with this record ?
Ten quick tips for homology modeling of high-resolution protein 3D structures
Y. Haddad, V. Adam, Z. Heger,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 2005
Public Library of Science (PLoS)
from 2005
PubMed Central
from 2005
Europe PubMed Central
from 2005
ProQuest Central
from 2005-06-01
Open Access Digital Library
from 2005-06-01
Open Access Digital Library
from 2005-01-01
Open Access Digital Library
from 2005-01-01
Medline Complete (EBSCOhost)
from 2005-06-01
Health & Medicine (ProQuest)
from 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
from 2005
- MeSH
- Algorithms MeSH
- Amino Acids chemistry MeSH
- Models, Biological MeSH
- Databases, Protein MeSH
- Internet MeSH
- Ions MeSH
- Hydrogen-Ion Concentration MeSH
- Ligands MeSH
- Computer Simulation MeSH
- Protein Processing, Post-Translational MeSH
- Proteins chemistry MeSH
- Solvents MeSH
- Protein Folding MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation MeSH
- Software MeSH
- Machine Learning MeSH
- Structural Homology, Protein MeSH
- Water MeSH
- Computational Biology methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The purpose of this quick guide is to help new modelers who have little or no background in comparative modeling yet are keen to produce high-resolution protein 3D structures for their study by following systematic good modeling practices, using affordable personal computers or online computational resources. Through the available experimental 3D-structure repositories, the modeler should be able to access and use the atomic coordinates for building homology models. We also aim to provide the modeler with a rationale behind making a simple list of atomic coordinates suitable for computational analysis abiding to principles of physics (e.g., molecular mechanics). Keeping that objective in mind, these quick tips cover the process of homology modeling and some postmodeling computations such as molecular docking and molecular dynamics (MD). A brief section was left for modeling nonprotein molecules, and a short case study of homology modeling is discussed.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025088
- 003
- CZ-PrNML
- 005
- 20201222155043.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1007449 $2 doi
- 035 __
- $a (PubMed)32240155
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Haddad, Yazan $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 245 10
- $a Ten quick tips for homology modeling of high-resolution protein 3D structures / $c Y. Haddad, V. Adam, Z. Heger,
- 520 9_
- $a The purpose of this quick guide is to help new modelers who have little or no background in comparative modeling yet are keen to produce high-resolution protein 3D structures for their study by following systematic good modeling practices, using affordable personal computers or online computational resources. Through the available experimental 3D-structure repositories, the modeler should be able to access and use the atomic coordinates for building homology models. We also aim to provide the modeler with a rationale behind making a simple list of atomic coordinates suitable for computational analysis abiding to principles of physics (e.g., molecular mechanics). Keeping that objective in mind, these quick tips cover the process of homology modeling and some postmodeling computations such as molecular docking and molecular dynamics (MD). A brief section was left for modeling nonprotein molecules, and a short case study of homology modeling is discussed.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a aminokyseliny $x chemie $7 D000596
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a databáze proteinů $7 D030562
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a internet $7 D020407
- 650 _2
- $a ionty $7 D007477
- 650 _2
- $a ligandy $7 D008024
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a proteiny $x chemie $7 D011506
- 650 _2
- $a software $7 D012984
- 650 _2
- $a rozpouštědla $7 D012997
- 650 _2
- $a strukturní homologie proteinů $7 D040681
- 650 _2
- $a voda $7 D014867
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Adam, Vojtech $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 16, č. 4 (2020), s. e1007449
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32240155 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155039 $b ABA008
- 999 __
- $a ok $b bmc $g 1599233 $s 1115774
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 16 $c 4 $d e1007449 $e 20200402 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20201125