• Something wrong with this record ?

EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions

R. Labounek, DA. Bridwell, R. Mareček, M. Lamoš, M. Mikl, P. Bednařík, J. Baštinec, T. Slavíček, P. Hluštík, M. Brázdil, J. Jan,

. 2019 ; 318 (-) : 34-46. [pub] 20190222

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025887
003      
CZ-PrNML
005      
20230525141440.0
007      
ta
008      
201125s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jneumeth.2019.02.012 $2 doi
035    __
$a (PubMed)30802472
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Labounek, René $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Department of Biomedical Engineering, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, 77900, Czech Republic; Department of Neurology, Palacký University, I. P. Pavlova 6, Olomouc, 77900, Czech Republic. Electronic address: rlaboune@umn.edu.
245    10
$a EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions / $c R. Labounek, DA. Bridwell, R. Mareček, M. Lamoš, M. Mikl, P. Bednařík, J. Baštinec, T. Slavíček, P. Hluštík, M. Brázdil, J. Jan,
520    9_
$a BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.
650    _2
$a dospělí $7 D000328
650    _2
$a velký mozek $x diagnostické zobrazování $x fyziologie $7 D054022
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a funkční zobrazování neurálních procesů $x metody $7 D059907
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a nervová síť $x diagnostické zobrazování $x fyziologie $7 D009415
650    _2
$a neurovaskulární vazba $x fyziologie $7 D000069336
650    _2
$a psycholingvistika $7 D011578
650    _2
$a zraková percepce $x fyziologie $7 D014796
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bridwell, David A $u Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
700    1_
$a Mareček, Radek $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
700    1_
$a Lamoš, Martin $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
700    1_
$a Mikl, Michal $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
700    1_
$a Bednařík, Petr $u High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna, 1090, Austria.
700    1_
$a Baštinec, Jaromír $u Department of Mathematics, Brno University of Technology, Technická 10, Brno, 61600, Czech Republic.
700    1_
$a Slavíček, Tomáš $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
700    1_
$a Hluštík, Petr $u Department of Neurology, Palacký University, I. P. Pavlova 6, Olomouc, 77900, Czech Republic; Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, 77900, Czech Republic.
700    1_
$a Brázdil, Milan $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
700    1_
$a Jan, Jiří, $d 1941- $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic. $7 jn20000710059
773    0_
$w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 318, č. - (2019), s. 34-46
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30802472 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20230525141434 $b ABA008
999    __
$a ok $b bmc $g 1600032 $s 1116573
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 318 $c - $d 34-46 $e 20190222 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...