-
Something wrong with this record ?
EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions
R. Labounek, DA. Bridwell, R. Mareček, M. Lamoš, M. Mikl, P. Bednařík, J. Baštinec, T. Slavíček, P. Hluštík, M. Brázdil, J. Jan,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Adult MeSH
- Electroencephalography methods MeSH
- Functional Neuroimaging methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Young Adult MeSH
- Nerve Net diagnostic imaging physiology MeSH
- Neurovascular Coupling physiology MeSH
- Psycholinguistics MeSH
- Cerebrum diagnostic imaging physiology MeSH
- Visual Perception physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.
Central European Institute of Technology Masaryk University Kamenice 735 5 Brno 62500 Czech Republic
Department of Mathematics Brno University of Technology Technická 10 Brno 61600 Czech Republic
Department of Neurology Palacký University 1 P Pavlova 6 Olomouc 77900 Czech Republic
Department of Neurology University Hospital Olomouc 1 P Pavlova 6 Olomouc 77900 Czech Republic
Mind Research Network 1101 Yale Blvd NE Albuquerque NM 87106 USA
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025887
- 003
- CZ-PrNML
- 005
- 20230525141440.0
- 007
- ta
- 008
- 201125s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jneumeth.2019.02.012 $2 doi
- 035 __
- $a (PubMed)30802472
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Labounek, René $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Department of Biomedical Engineering, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, 77900, Czech Republic; Department of Neurology, Palacký University, I. P. Pavlova 6, Olomouc, 77900, Czech Republic. Electronic address: rlaboune@umn.edu.
- 245 10
- $a EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions / $c R. Labounek, DA. Bridwell, R. Mareček, M. Lamoš, M. Mikl, P. Bednařík, J. Baštinec, T. Slavíček, P. Hluštík, M. Brázdil, J. Jan,
- 520 9_
- $a BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a velký mozek $x diagnostické zobrazování $x fyziologie $7 D054022
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a funkční zobrazování neurálních procesů $x metody $7 D059907
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a nervová síť $x diagnostické zobrazování $x fyziologie $7 D009415
- 650 _2
- $a neurovaskulární vazba $x fyziologie $7 D000069336
- 650 _2
- $a psycholingvistika $7 D011578
- 650 _2
- $a zraková percepce $x fyziologie $7 D014796
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bridwell, David A $u Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- 700 1_
- $a Mareček, Radek $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
- 700 1_
- $a Lamoš, Martin $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
- 700 1_
- $a Mikl, Michal $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
- 700 1_
- $a Bednařík, Petr $u High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna, 1090, Austria.
- 700 1_
- $a Baštinec, Jaromír $u Department of Mathematics, Brno University of Technology, Technická 10, Brno, 61600, Czech Republic.
- 700 1_
- $a Slavíček, Tomáš $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
- 700 1_
- $a Hluštík, Petr $u Department of Neurology, Palacký University, I. P. Pavlova 6, Olomouc, 77900, Czech Republic; Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, 77900, Czech Republic.
- 700 1_
- $a Brázdil, Milan $u Central European Institute of Technology, Masaryk University, Kamenice 735/5, Brno, 62500, Czech Republic.
- 700 1_
- $a Jan, Jiří, $d 1941- $u Department of Biomedical Engineering, Brno University of Technology, Technická 12, Brno, 61600, Czech Republic. $7 jn20000710059
- 773 0_
- $w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 318, č. - (2019), s. 34-46
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30802472 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20230525141434 $b ABA008
- 999 __
- $a ok $b bmc $g 1600032 $s 1116573
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 318 $c - $d 34-46 $e 20190222 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
- LZP __
- $a Pubmed-20201125