-
Je něco špatně v tomto záznamu ?
Iterative expert-in-the-loop classification of sleep PSG recordings using a hierarchical clustering
V. Gerla, V. Kremen, M. Macas, D. Dudysova, A. Mladek, P. Sos, L. Lhotska,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek fyziologie MeSH
- mozkové vlny MeSH
- počítačové zpracování signálu MeSH
- polysomnografie metody MeSH
- poruchy iniciace a udržování spánku patofyziologie MeSH
- shluková analýza MeSH
- spánek fyziologie MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The classification of sleep signals is a subjective and time consuming task. A large number of automatic classifiers have been published in the past decade but a sleep community has no strong confidence to use them in clinical practice and still remains using a standard manual scoring according standardized rules. NEW METHOD: We developed a semi-supervised data-driven approach for objective and efficient evaluation of polysomnographic (PSG) data. The proposed algorithm finds a representative set of signal segments that are subsequently scored by a sleep neurologist. The remaining part of the recording is then automatically classified using these templates. RESULTS: The method was evaluated on 36 PSG recordings (18 chronic insomniacs, 18 healthy controls). We show a faster and objective evaluation of PSG data compared to the manual scoring that is over-performing automated classifiers (accuracy increases ∼14%). The classification results are comparable on both datasets. COMPARISON WITH EXISTING METHOD(S): The methodology that we propose has not yet been published in the area of sleep PSG data processing. The performance of our method is comparable to various published automated approaches (a typical published classification accuracy is ∼75-95%). The method allows the evaluation of PSG recordings in more general terms and across different recording devices and standards. CONCLUSIONS: The proposed solution is not based on a single-purpose rules or heuristics and training model is not trained on other patient's sleep recordings. The method is applicable to wide range of similar tasks and various types of physiological signals.
3rd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Biomedical Engineering Czech Technical University Prague Czech Republic
National Institute of Mental Health Klecany Czech Republic
Neurosurgical Department 1st Faculty of Medicine Charles University Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025900
- 003
- CZ-PrNML
- 005
- 20210108110358.0
- 007
- ta
- 008
- 201125s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jneumeth.2019.01.013 $2 doi
- 035 __
- $a (PubMed)30738880
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Gerla, V $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic. Electronic address: vaclav.gerla@cvut.cz.
- 245 10
- $a Iterative expert-in-the-loop classification of sleep PSG recordings using a hierarchical clustering / $c V. Gerla, V. Kremen, M. Macas, D. Dudysova, A. Mladek, P. Sos, L. Lhotska,
- 520 9_
- $a BACKGROUND: The classification of sleep signals is a subjective and time consuming task. A large number of automatic classifiers have been published in the past decade but a sleep community has no strong confidence to use them in clinical practice and still remains using a standard manual scoring according standardized rules. NEW METHOD: We developed a semi-supervised data-driven approach for objective and efficient evaluation of polysomnographic (PSG) data. The proposed algorithm finds a representative set of signal segments that are subsequently scored by a sleep neurologist. The remaining part of the recording is then automatically classified using these templates. RESULTS: The method was evaluated on 36 PSG recordings (18 chronic insomniacs, 18 healthy controls). We show a faster and objective evaluation of PSG data compared to the manual scoring that is over-performing automated classifiers (accuracy increases ∼14%). The classification results are comparable on both datasets. COMPARISON WITH EXISTING METHOD(S): The methodology that we propose has not yet been published in the area of sleep PSG data processing. The performance of our method is comparable to various published automated approaches (a typical published classification accuracy is ∼75-95%). The method allows the evaluation of PSG recordings in more general terms and across different recording devices and standards. CONCLUSIONS: The proposed solution is not based on a single-purpose rules or heuristics and training model is not trained on other patient's sleep recordings. The method is applicable to wide range of similar tasks and various types of physiological signals.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a mozkové vlny $7 D058256
- 650 _2
- $a shluková analýza $7 D016000
- 650 12
- $a elektroencefalografie $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a polysomnografie $x metody $7 D017286
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a spánek $x fyziologie $7 D012890
- 650 _2
- $a poruchy iniciace a udržování spánku $x patofyziologie $7 D007319
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kremen, V $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic. Electronic address: vaclav.kremen@cvut.cz.
- 700 1_
- $a Macas, M $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic.
- 700 1_
- $a Dudysova, D $u National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- 700 1_
- $a Mládek, Arnošt $7 xx0255112 $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic; Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic; Neurosurgical Department, 1st Faculty of Medicine, Charles University, Czech Republic.
- 700 1_
- $a Sos, P $u National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Lhotska, L $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic; Faculty of Biomedical Engineering, Czech Technical University in Prague, Czech Republic.
- 773 0_
- $w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 317, č. - (2019), s. 61-70
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30738880 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20210108110320 $b ABA008
- 999 __
- $a ok $b bmc $g 1600045 $s 1116586
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 317 $c - $d 61-70 $e 20190207 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
- LZP __
- $a Pubmed-20201125