Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance

KV. Saboo, Y. Varatharajah, BM. Berry, V. Kremen, MR. Sperling, KA. Davis, BC. Jobst, RE. Gross, B. Lega, SA. Sheth, GA. Worrell, RK. Iyer, MT. Kucewicz,

. 2019 ; 9 (1) : 17390. [pub] 20191122

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028745

Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028745
003      
CZ-PrNML
005      
20210114154943.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-53925-5 $2 doi
035    __
$a (PubMed)31758077
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Saboo, Krishnakant V $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA. ksaboo2@illinois.edu.
245    10
$a Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance / $c KV. Saboo, Y. Varatharajah, BM. Berry, V. Kremen, MR. Sperling, KA. Davis, BC. Jobst, RE. Gross, B. Lega, SA. Sheth, GA. Worrell, RK. Iyer, MT. Kucewicz,
520    9_
$a Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.
650    _2
$a algoritmy $7 D000465
650    _2
$a biomedicínské inženýrství $x metody $x trendy $7 D001698
650    _2
$a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
650    _2
$a mapování mozku $x metody $7 D001931
650    _2
$a kognice $x fyziologie $7 D003071
650    _2
$a datové soubory jako téma $7 D066264
650    12
$a elektrokortikografie $x metody $7 D000069280
650    12
$a implantované elektrody $7 D004567
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a elektrofyziologické jevy $7 D055724
650    _2
$a epilepsie $x diagnóza $x patofyziologie $x psychologie $7 D004827
650    _2
$a evokované potenciály $x fyziologie $7 D005071
650    _2
$a lidé $7 D006801
650    _2
$a krátkodobá paměť $x fyziologie $7 D008570
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a senzitivita a specificita $7 D012680
650    12
$a plnění a analýza úkolů $7 D013647
650    12
$a strojové učení bez učitele $7 D000069558
650    _2
$a verbální chování $x fyziologie $7 D014705
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
655    _2
$a validační studie $7 D023361
700    1_
$a Varatharajah, Yogatheesan $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA.
700    1_
$a Berry, Brent M $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA.
700    1_
$a Kremen, Vaclav $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA. Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic.
700    1_
$a Sperling, Michael R $u Thomas Jefferson University Hospital, Dept. of Neurology, Philadelphia, PA, USA.
700    1_
$a Davis, Kathryn A $u University of Pennsylvania Hospital, Dept. of Neurology, Philadelphia, PA, USA.
700    1_
$a Jobst, Barbara C $u Dartmouth-Hitchcock Medical Center, Dept. of Neurology, Lebanon, NH, USA.
700    1_
$a Gross, Robert E $u Emory University, Dept. of Neurosurgery, Atlanta, GA, USA.
700    1_
$a Lega, Bradley $u UT Southwestern Medical Center, Dept. of Neurosurgery, Dallas, TX, USA.
700    1_
$a Sheth, Sameer A $u Baylor College of Medicine, Dept. of Neurosurgery, Houston, TX, USA.
700    1_
$a Worrell, Gregory A $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA.
700    1_
$a Iyer, Ravishankar K $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA.
700    1_
$a Kucewicz, Michal T $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Kucewicz.Michal@mayo.edu. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA. Kucewicz.Michal@mayo.edu. Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Multimedia Systems Department, Gdansk, Poland. Kucewicz.Michal@mayo.edu.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 17390
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31758077 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154939 $b ABA008
999    __
$a ok $b bmc $g 1609080 $s 1119925
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 17390 $e 20191122 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...