-
Je něco špatně v tomto záznamu ?
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
KV. Saboo, Y. Varatharajah, BM. Berry, V. Kremen, MR. Sperling, KA. Davis, BC. Jobst, RE. Gross, B. Lega, SA. Sheth, GA. Worrell, RK. Iyer, MT. Kucewicz,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., validační studie
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- algoritmy MeSH
- biomedicínské inženýrství metody trendy MeSH
- datové soubory jako téma MeSH
- elektroencefalografie metody MeSH
- elektrofyziologické jevy MeSH
- elektrokortikografie * metody MeSH
- epilepsie diagnóza patofyziologie psychologie MeSH
- evokované potenciály fyziologie MeSH
- implantované elektrody * MeSH
- kognice fyziologie MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- plnění a analýza úkolů * MeSH
- retrospektivní studie MeSH
- senzitivita a specificita MeSH
- strojové učení bez učitele * MeSH
- verbální chování fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- validační studie MeSH
Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.
Baylor College of Medicine Dept of Neurosurgery Houston TX USA
Dartmouth Hitchcock Medical Center Dept of Neurology Lebanon NH USA
Emory University Dept of Neurosurgery Atlanta GA USA
Thomas Jefferson University Hospital Dept of Neurology Philadelphia PA USA
University of Illinois Dept of Electrical and Computer Engineering Urbana Champaign IL USA
University of Pennsylvania Hospital Dept of Neurology Philadelphia PA USA
UT Southwestern Medical Center Dept of Neurosurgery Dallas TX USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028745
- 003
- CZ-PrNML
- 005
- 20210114154943.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-53925-5 $2 doi
- 035 __
- $a (PubMed)31758077
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Saboo, Krishnakant V $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA. ksaboo2@illinois.edu.
- 245 10
- $a Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance / $c KV. Saboo, Y. Varatharajah, BM. Berry, V. Kremen, MR. Sperling, KA. Davis, BC. Jobst, RE. Gross, B. Lega, SA. Sheth, GA. Worrell, RK. Iyer, MT. Kucewicz,
- 520 9_
- $a Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a biomedicínské inženýrství $x metody $x trendy $7 D001698
- 650 _2
- $a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a kognice $x fyziologie $7 D003071
- 650 _2
- $a datové soubory jako téma $7 D066264
- 650 12
- $a elektrokortikografie $x metody $7 D000069280
- 650 12
- $a implantované elektrody $7 D004567
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a elektrofyziologické jevy $7 D055724
- 650 _2
- $a epilepsie $x diagnóza $x patofyziologie $x psychologie $7 D004827
- 650 _2
- $a evokované potenciály $x fyziologie $7 D005071
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a krátkodobá paměť $x fyziologie $7 D008570
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 12
- $a plnění a analýza úkolů $7 D013647
- 650 12
- $a strojové učení bez učitele $7 D000069558
- 650 _2
- $a verbální chování $x fyziologie $7 D014705
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Varatharajah, Yogatheesan $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA.
- 700 1_
- $a Berry, Brent M $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA.
- 700 1_
- $a Kremen, Vaclav $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA. Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic.
- 700 1_
- $a Sperling, Michael R $u Thomas Jefferson University Hospital, Dept. of Neurology, Philadelphia, PA, USA.
- 700 1_
- $a Davis, Kathryn A $u University of Pennsylvania Hospital, Dept. of Neurology, Philadelphia, PA, USA.
- 700 1_
- $a Jobst, Barbara C $u Dartmouth-Hitchcock Medical Center, Dept. of Neurology, Lebanon, NH, USA.
- 700 1_
- $a Gross, Robert E $u Emory University, Dept. of Neurosurgery, Atlanta, GA, USA.
- 700 1_
- $a Lega, Bradley $u UT Southwestern Medical Center, Dept. of Neurosurgery, Dallas, TX, USA.
- 700 1_
- $a Sheth, Sameer A $u Baylor College of Medicine, Dept. of Neurosurgery, Houston, TX, USA.
- 700 1_
- $a Worrell, Gregory A $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA.
- 700 1_
- $a Iyer, Ravishankar K $u University of Illinois, Dept. of Electrical and Computer Engineering, Urbana-Champaign, IL, USA.
- 700 1_
- $a Kucewicz, Michal T $u Mayo Clinic, Dept. of Neurology, Rochester, MN, USA. Kucewicz.Michal@mayo.edu. Mayo Clinic, Dept. of Physiology & Biomedical Engineering, Rochester, MN, USA. Kucewicz.Michal@mayo.edu. Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Multimedia Systems Department, Gdansk, Poland. Kucewicz.Michal@mayo.edu.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 17390
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31758077 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154939 $b ABA008
- 999 __
- $a ok $b bmc $g 1609080 $s 1119925
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 17390 $e 20191122 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105