-
Je něco špatně v tomto záznamu ?
Demographic and public health characteristics explain large part of variability in COVID-19 mortality across countries
O. Hradsky, A. Komarek
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
CINAHL Plus with Full Text (EBSCOhost)
od 2006-01-02
Oxford Journals Open Access Collection
od 1991-01-01
PubMed
33479720
DOI
10.1093/eurpub/ckaa226
Knihovny.cz E-zdroje
- MeSH
- COVID-19 mortalita MeSH
- dospělí MeSH
- HIV infekce epidemiologie MeSH
- hrubý domácí produkt MeSH
- hustota populace MeSH
- incidence MeSH
- komorbidita MeSH
- kouření epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- městské obyvatelstvo statistika a číselné údaje MeSH
- mladiství MeSH
- nadváha epidemiologie MeSH
- obložnost MeSH
- pandemie prevence a kontrola MeSH
- poskytování zdravotní péče organizace a řízení MeSH
- prevalence MeSH
- SARS-CoV-2 * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- socioekonomické faktory MeSH
- teplota MeSH
- tuberkulóza epidemiologie MeSH
- věkové rozložení MeSH
- veřejné zdravotnictví MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The numbers of coronavirus disease 2019 (COVID-19) deaths per million people differ widely across countries. Often, the causal effects of interventions taken by authorities are unjustifiably concluded based on the comparison of pure mortalities in countries where interventions consisting different strategies have been taken. Moreover, the possible effects of other factors are only rarely considered. METHODS: We used data from open databases (European Centre for Disease Prevention and Control, World Bank Open Data, The BCG World Atlas) and publications to develop a model that could largely explain the differences in cumulative mortality between countries using non-interventional (mostly socio-demographic) factors. RESULTS: Statistically significant associations with the logarithmic COVID-19 mortality were found with the following: proportion of people aged 80 years and above, population density, proportion of urban population, gross domestic product, number of hospital beds per population, average temperature in March and incidence of tuberculosis. The final model could explain 67% of the variability. This finding could also be interpreted as follows: less than a third of the variability in logarithmic mortality differences could be modified by diverse non-pharmaceutical interventions ranging from case isolation to comprehensive measures, constituting case isolation, social distancing of the entire population and closure of schools and borders. CONCLUSIONS: In particular countries, the number of people who will die from COVID-19 is largely given by factors that cannot be drastically changed as an immediate reaction to the pandemic and authorities should focus on modifiable variables, e.g. the number of hospital beds.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21011532
- 003
- CZ-PrNML
- 005
- 20210507102210.0
- 007
- ta
- 008
- 210420s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/eurpub/ckaa226 $2 doi
- 035 __
- $a (PubMed)33479720
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Hradsky, Ondrej $u Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- 245 10
- $a Demographic and public health characteristics explain large part of variability in COVID-19 mortality across countries / $c O. Hradsky, A. Komarek
- 520 9_
- $a BACKGROUND: The numbers of coronavirus disease 2019 (COVID-19) deaths per million people differ widely across countries. Often, the causal effects of interventions taken by authorities are unjustifiably concluded based on the comparison of pure mortalities in countries where interventions consisting different strategies have been taken. Moreover, the possible effects of other factors are only rarely considered. METHODS: We used data from open databases (European Centre for Disease Prevention and Control, World Bank Open Data, The BCG World Atlas) and publications to develop a model that could largely explain the differences in cumulative mortality between countries using non-interventional (mostly socio-demographic) factors. RESULTS: Statistically significant associations with the logarithmic COVID-19 mortality were found with the following: proportion of people aged 80 years and above, population density, proportion of urban population, gross domestic product, number of hospital beds per population, average temperature in March and incidence of tuberculosis. The final model could explain 67% of the variability. This finding could also be interpreted as follows: less than a third of the variability in logarithmic mortality differences could be modified by diverse non-pharmaceutical interventions ranging from case isolation to comprehensive measures, constituting case isolation, social distancing of the entire population and closure of schools and borders. CONCLUSIONS: In particular countries, the number of people who will die from COVID-19 is largely given by factors that cannot be drastically changed as an immediate reaction to the pandemic and authorities should focus on modifiable variables, e.g. the number of hospital beds.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a věkové rozložení $7 D017677
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a obložnost $7 D001509
- 650 _2
- $a COVID-19 $x mortalita $7 D000086382
- 650 _2
- $a komorbidita $7 D015897
- 650 _2
- $a poskytování zdravotní péče $x organizace a řízení $7 D003695
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hrubý domácí produkt $7 D059066
- 650 _2
- $a HIV infekce $x epidemiologie $7 D015658
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a incidence $7 D015994
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a nadváha $x epidemiologie $7 D050177
- 650 _2
- $a pandemie $x prevence a kontrola $7 D058873
- 650 _2
- $a hustota populace $7 D011156
- 650 _2
- $a prevalence $7 D015995
- 650 _2
- $a veřejné zdravotnictví $7 D011634
- 650 12
- $a SARS-CoV-2 $7 D000086402
- 650 _2
- $a kouření $x epidemiologie $7 D012907
- 650 _2
- $a socioekonomické faktory $7 D012959
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a tuberkulóza $x epidemiologie $7 D014376
- 650 _2
- $a městské obyvatelstvo $x statistika a číselné údaje $7 D014505
- 651 _2
- $a Evropa $x epidemiologie $7 D005060
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Komarek, Arnost $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
- 773 0_
- $w MED00012099 $t European journal of public health $x 1464-360X $g Roč. 31, č. 1 (2021), s. 12-16
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33479720 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507102210 $b ABA008
- 999 __
- $a ok $b bmc $g 1650036 $s 1131911
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 31 $c 1 $d 12-16 $e 20210201 $i 1464-360X $m European journal of public health $n Eur J Public Health $x MED00012099
- LZP __
- $a Pubmed-20210420