Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia-Reperfusion in a Rat Model

L. Alechinsky, F. Favreau, P. Cechova, S. Inal, PA. Faye, C. Ory, R. Thuillier, B. Barrou, P. Trouillas, J. Guillard, T. Hauet

. 2020 ; 10 (3) : . [pub] 20200312

Language English Country Switzerland

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND AND PURPOSE: Ischemia-reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping. The nature and the intensity of the processes induced by ischemia types are different, hence the therapeutic strategy should be adapted. Herein, we investigated the protective role of tannic acid, a natural polyphenol in a rat model reproducing both renal warm ischemia and kidney allotransplantation. The follow-up was done after 1 week. EXPERIMENTAL APPROACH: To characterize the effect of tannic acid, an in vitro model of endothelial cells subjected to hypoxia-reoxygenation was used. KEY RESULTS: Tannic acid statistically improved recovery after warm ischemia but not after cold ischemia. In kidneys biopsies, 3h after warm ischemia-reperfusion, oxidative stress development was limited by tannic acid and the production of reactive oxygen species was inhibited, potentially through Nuclear Factor erythroid-2-Related factor 2 (NRF2) activation. In vitro, tannic acid and its derivatives limited cytotoxicity and the generation of reactive oxygen species. Molecular dynamics simulations showed that tannic acid efficiently interacts with biological membranes, allowing efficient lipid oxidation inhibition. Tannic acid also promoted endothelial cell migration and proliferation during hypoxia. CONCLUSIONS: Tannic acid was able to improve renal recovery after renal warm ischemia with an antioxidant effect putatively extended by the production of its derivatives in the body and promoted cell regeneration during hypoxia. This suggests that the mechanisms induced by warm and cold ischemia are different and require specific therapeutic strategies.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012797
003      
CZ-PrNML
005      
20210507101645.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/biom10030439 $2 doi
035    __
$a (PubMed)32178273
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Alechinsky, Louise $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France
245    10
$a Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia-Reperfusion in a Rat Model / $c L. Alechinsky, F. Favreau, P. Cechova, S. Inal, PA. Faye, C. Ory, R. Thuillier, B. Barrou, P. Trouillas, J. Guillard, T. Hauet
520    9_
$a BACKGROUND AND PURPOSE: Ischemia-reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping. The nature and the intensity of the processes induced by ischemia types are different, hence the therapeutic strategy should be adapted. Herein, we investigated the protective role of tannic acid, a natural polyphenol in a rat model reproducing both renal warm ischemia and kidney allotransplantation. The follow-up was done after 1 week. EXPERIMENTAL APPROACH: To characterize the effect of tannic acid, an in vitro model of endothelial cells subjected to hypoxia-reoxygenation was used. KEY RESULTS: Tannic acid statistically improved recovery after warm ischemia but not after cold ischemia. In kidneys biopsies, 3h after warm ischemia-reperfusion, oxidative stress development was limited by tannic acid and the production of reactive oxygen species was inhibited, potentially through Nuclear Factor erythroid-2-Related factor 2 (NRF2) activation. In vitro, tannic acid and its derivatives limited cytotoxicity and the generation of reactive oxygen species. Molecular dynamics simulations showed that tannic acid efficiently interacts with biological membranes, allowing efficient lipid oxidation inhibition. Tannic acid also promoted endothelial cell migration and proliferation during hypoxia. CONCLUSIONS: Tannic acid was able to improve renal recovery after renal warm ischemia with an antioxidant effect putatively extended by the production of its derivatives in the body and promoted cell regeneration during hypoxia. This suggests that the mechanisms induced by warm and cold ischemia are different and require specific therapeutic strategies.
650    _2
$a zvířata $7 D000818
650    _2
$a modely nemocí na zvířatech $7 D004195
650    12
$a ledviny $x metabolismus $x patologie $x patofyziologie $7 D007668
650    _2
$a vyšetření funkce ledvin $7 D007677
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a obnova funkce $x účinky léků $7 D020127
650    12
$a reperfuzní poškození $x metabolismus $x patologie $x patofyziologie $7 D015427
650    _2
$a taniny $x farmakologie $7 D013634
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Favreau, Frederic $u Université de Limoges, Faculté de Médecine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", 87025 Limoges, France $u CHU de Limoges, Laboratoire de Biochimie et Génétique Moléculaire, 87042 Limoges, France
700    1_
$a Cechova, Petra $u University Palacký of Olomouc, RCPTM, Dept Physical Chemistry, Faculty of Science, 771 46 Olomouc, Czech Republic
700    1_
$a Inal, Sofiane $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France $u CHU de Poitiers, Laboratoire de Biochimie, 86021 Poitiers, France
700    1_
$a Faye, Pierre-Antoine $u Université de Limoges, Faculté de Médecine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", 87025 Limoges, France $u CHU de Limoges, Laboratoire de Biochimie et Génétique Moléculaire, 87042 Limoges, France
700    1_
$a Ory, Cecile $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France
700    1_
$a Thuillier, Raphaël $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France $u CHU de Poitiers, Laboratoire de Biochimie, 86021 Poitiers, France $u Université de Poitiers, Faculté de Médecine et de Pharmacie, 86073 Poitiers, France $u Département Hospitalo-Universitaire de Transplantation SUPORT, 86021 Poitiers, France
700    1_
$a Barrou, Benoit $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France
700    1_
$a Trouillas, Patrick $u Inserm, UMR 1248, Fac. Pharmacy, Univ. Limoges, 87025 Limoges, France
700    1_
$a Guillard, Jerome $u Université de Poitiers, UMR CNRS 7285 IC2MP, Team 5 Organic Chemistry, 86073 Poitiers, France
700    1_
$a Hauet, Thierry $u INSERM, U1082 IRTOMIT, 86021 Poitiers, France $u CHU de Poitiers, Laboratoire de Biochimie, 86021 Poitiers, France $u Université de Poitiers, Faculté de Médecine et de Pharmacie, 86073 Poitiers, France $u Département Hospitalo-Universitaire de Transplantation SUPORT, 86021 Poitiers, France
773    0_
$w MED00188737 $t Biomolecules $x 2218-273X $g Roč. 10, č. 3 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32178273 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507101645 $b ABA008
999    __
$a ok $b bmc $g 1651042 $s 1133176
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 3 $e 20200312 $i 2218-273X $m Biomolecules $n Biomolecules $x MED00188737
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...