Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia-Reperfusion in a Rat Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32178273
PubMed Central
PMC7175177
DOI
10.3390/biom10030439
PII: biom10030439
Knihovny.cz E-zdroje
- Klíčová slova
- cold ischemia, oxidative stress, renal function recovery, tannic acid, warm ischemia,
- MeSH
- krysa rodu Rattus MeSH
- ledviny * metabolismus patologie patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- obnova funkce účinky léků MeSH
- reperfuzní poškození * metabolismus patologie patofyziologie MeSH
- taniny farmakologie MeSH
- vyšetření funkce ledvin MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- taniny MeSH
BACKGROUND AND PURPOSE: Ischemia-reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping. The nature and the intensity of the processes induced by ischemia types are different, hence the therapeutic strategy should be adapted. Herein, we investigated the protective role of tannic acid, a natural polyphenol in a rat model reproducing both renal warm ischemia and kidney allotransplantation. The follow-up was done after 1 week. EXPERIMENTAL APPROACH: To characterize the effect of tannic acid, an in vitro model of endothelial cells subjected to hypoxia-reoxygenation was used. KEY RESULTS: Tannic acid statistically improved recovery after warm ischemia but not after cold ischemia. In kidneys biopsies, 3h after warm ischemia-reperfusion, oxidative stress development was limited by tannic acid and the production of reactive oxygen species was inhibited, potentially through Nuclear Factor erythroid-2-Related factor 2 (NRF2) activation. In vitro, tannic acid and its derivatives limited cytotoxicity and the generation of reactive oxygen species. Molecular dynamics simulations showed that tannic acid efficiently interacts with biological membranes, allowing efficient lipid oxidation inhibition. Tannic acid also promoted endothelial cell migration and proliferation during hypoxia. CONCLUSIONS: Tannic acid was able to improve renal recovery after renal warm ischemia with an antioxidant effect putatively extended by the production of its derivatives in the body and promoted cell regeneration during hypoxia. This suggests that the mechanisms induced by warm and cold ischemia are different and require specific therapeutic strategies.
CHU de Limoges Laboratoire de Biochimie et Génétique Moléculaire 87042 Limoges France
CHU de Poitiers Laboratoire de Biochimie 86021 Poitiers France
Département Hospitalo Universitaire de Transplantation SUPORT 86021 Poitiers France
INSERM U1082 IRTOMIT 86021 Poitiers France
Inserm UMR 1248 Fac Pharmacy Univ Limoges 87025 Limoges France
Université de Poitiers Faculté de Médecine et de Pharmacie 86073 Poitiers France
Université de Poitiers UMR CNRS 7285 IC2MP Team 5 Organic Chemistry 86073 Poitiers France
Zobrazit více v PubMed
Favreau F., Giraud S., Bon D., Chatauret N., Thuillier R., Hauet T. Ischemia reperfusion control: The key of kidney graft outcome. Med. Sci. (Paris) 2013;29:183–188. doi: 10.1051/medsci/2013292016. PubMed DOI
Khalifeh T., Baulier E., Le Pape S., Kerforne T., Coudroy R., Maiga S., Hauet T., Pinsard M., Favreau F. Strategies to optimize kidney recovery and preservation in transplantation: Specific aspects in pediatric transplantation. Pediatr. Nephrol. 2014;30:1243–1254. doi: 10.1007/s00467-014-2924-2. PubMed DOI
Do G.M., Kwon E.Y., Ha T.Y., Park Y.B., Kim H.J., Jeon S.M., Lee M.K., Choi M.S. Tannic acid is more effective than clofibrate for the elevation of hepatic beta-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice. Br. J. Nutr. 2011;106:1855–1863. doi: 10.1017/S000711451100256X. PubMed DOI
Rice-Evans C. Plant polyphenols: Free radical scavengers or chain-breaking antioxidants? Biochem. Soc. Symp. 1995;61:103–116. doi: 10.1042/bss0610103. PubMed DOI
Lopes G.K., Schulman H.M., Hermes-Lima M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta. 1999:1472. PubMed
Mard S.A., Mojadami S., Farbood Y., Naseri M.K.G. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats. Vet. Res. Forum. 2015;6:305–311. PubMed PMC
Lee J.M., Li J., Johnson D.A., Stein T.D., Kraft A.D., Calkins M.J., Jakel R.J., Johnson J.A. Nrf2, a multi-organ protector? FASEB J. 2005;19:1061–1066. doi: 10.1096/fj.04-2591hyp. PubMed DOI
Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452. doi: 10.1016/j.bcp.2006.07.004. PubMed DOI
Nakamura Y., Tsuji S., Tonogai Y. Method for Analysis of Tannic Acid and Its Metabolites in Biological Samples: Application to Tannic Acid Metabolism in the Rat. J. Agric. Food Chem. 2003;51:331–339. doi: 10.1021/jf020847+. PubMed DOI
Zhu J., Ng J., Filippich L. Determination of tannic acid and its phenolic metabolites in biological fluids by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 1992;577:77–85. doi: 10.1016/0378-4347(92)80600-U. PubMed DOI
Chade A.R., Rodriguez-Porcel M., Grande J.P., Zhu X.Y., Sica V., Napoli C., Sawamura T., Textor S.C., O Lerman L., O Lerman L. Mechanisms of Renal Structural Alterations in Combined Hypercholesterolemia and Renal Artery Stenosis. Arter. Thromb. Vasc. Boil. 2003;23:1295–1301. doi: 10.1161/01.ATV.0000077477.40824.52. PubMed DOI
Delehouzé C., Leverrier-Penna S., Le Cann F., Comte A., Jacquard-Fevai M., Delalande O., Desban N., Baratte B., Gallais I., Faurez F., et al. 6E11, a highly selective inhibitor of Receptor-Interacting Protein Kinase 1, protects cells against cold hypoxia-reoxygenation injury. Sci. Rep. 2017;7:12931. doi: 10.1038/s41598-017-12788-4. PubMed DOI PMC
Ghigo G., Berto S., Minella M., Vione D., Alladio E., Nurchi V.M., Lachowicz J.I.I., Daniele P. New insights into the protogenic and spectroscopic properties of commercial tannic acid: The role of gallic acid impurities. New J. Chem. 2018;42:7703–7712. doi: 10.1039/C7NJ04903J. DOI
Jabbari M. Solvent dependence of protonation equilibria for gallic acid in water and different acetonitrile–water cosolvent systems. J. Mol. Liq. 2015;208:5–10. doi: 10.1016/j.molliq.2015.03.055. DOI
Lin Y., Manning P.T., Jia J., Gaut J.P., Xiao Z.-Y., Capoccia B.J., Chen C.-C., Hiebsch R.R., Upadhya G., Mohanakumar T., et al. CD47 Blockade Reduces Ischemia-Reperfusion Injury and Improves Outcomes in a Rat Kidney Transplant Model. Transplantation. 2014;98:394–401. doi: 10.1097/TP.0000000000000252. PubMed DOI PMC
Ferreira D., Gross G.G., Hagerman A.E., Kolodziej H., Yoshida T. Tannins and related polyphenols: Perspectives on their chemistry, biology, ecological effects, and human health protection. Phytochemistry. 2008;69:3006–3008. doi: 10.1016/j.phytochem.2008.10.018. PubMed DOI
Brune M., Rossander L., Hallberg L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 1989;43:547–557. PubMed
Mota M.L., Thomas G., Filho J.M.B. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J. Ethnopharmacol. 1985;13:289–300. PubMed
Mattera R., Benvenuto M., Giganti M.G., Tresoldi I., Pluchinotta F.R., Bergante S., Tettamanti G., Masuelli L., Manzari V., Modesti A., et al. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients. 2017;9:523. doi: 10.3390/nu9050523. PubMed DOI PMC
Basu T., Panja S., Shendge A.K., Das A., Mandal N. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. Environ. Toxicol. 2018;33:603–618. doi: 10.1002/tox.22549. PubMed DOI
Xu Y., Hu M., Chen S., Chen F., Wang C., Tang Y., Du C., Wang X., Zeng H., Shen M., et al. Tannic acid attenuated irradiation-induced apoptosis in megakaryocytes. Exp. Cell Res. 2018;370:409–416. doi: 10.1016/j.yexcr.2018.07.003. PubMed DOI
Canbek M., Bayramoglu G., Senturk H., Vatan A.P.O., Uyanoglu M., Ceyhan E., Özen A., Durmus B., Kartkaya K., Kanbak G. The examination of protective effects of gallic acid against damage of oxidative stress during induced-experimental renal ischemia-reperfusion in experiment. Bratisl. Lek. Listy. 2014;115:557–562. doi: 10.4149/BLL_2014_108. PubMed DOI
Marino T., Galano A., Russo N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J. Phys. Chem. B. 2014;118:10380–10389. doi: 10.1021/jp505589b. PubMed DOI
Favreau F., Petit-Paris I., Hauet T., Dutheil D., Papet Y., Mauco G., Tallineau C. Cyclooxygenase 1-dependent production of F2-isoprostane and changes in redox status during warm renal ischemia–reperfusion. Free Radic. Biol. Med. 2004;36:1034–1042. doi: 10.1016/j.freeradbiomed.2004.01.010. PubMed DOI
Papazova D., Friederich-Persson M., Joles J.A., Verhaar M.C. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension. Am. J. Physiol. Physiol. 2015;308:F22–F28. doi: 10.1152/ajprenal.00278.2014. PubMed DOI
Zhao H., Huang H., Ologunde R., Lloyd D.G., Watts H., Vizcaychipi M., Lian Q., George A.J., Ma D. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats. Anesthesiology. 2015;122:1312–1326. doi: 10.1097/ALN.0000000000000664. PubMed DOI
Skwirba M., Zakrzewicz A., Atanasova S., Wilker S., Müller D., Padberg W., Grau V., Fuchs-Moll G. Expression of nestin after renal transplantation in the rat. APMIS. 2014;122:1020–1031. doi: 10.1111/apm.12255. PubMed DOI
Vass D.G., Shrestha B., Haylor J., Hughes J., Marson L. Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transpl. Int. 2012;25:792–800. doi: 10.1111/j.1432-2277.2012.01482.x. PubMed DOI
Bon D., Chatauret N., Giraud S., Thuillier R., Favreau F., Hauet T. New strategies to optimize kidney recovery and preservation in transplantation. Nat. Rev. Nephrol. 2012;8:339–347. doi: 10.1038/nrneph.2012.83. PubMed DOI
Maïga S., Allain G., Hauet T., Roumy J., Baulier E., Scepi M., Dierick M., Van Hoorebeke L., Hannaert P., Guy F., et al. Renal auto-transplantation promotes cortical microvascular network remodeling in a preclinical porcine model. PLoS ONE. 2017;12:e0181067. doi: 10.1371/journal.pone.0181067. PubMed DOI PMC
Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives