• Je něco špatně v tomto záznamu ?

On transformative adaptive activation functions in neural networks for gene expression inference

V. Kunc, J. Kléma

. 2021 ; 16 (1) : e0243915. [pub] 20210114

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019446

Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D-GEX method employs neural networks to infer the entire profile. However, the original D-GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D-GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019446
003      
CZ-PrNML
005      
20240805142700.0
007      
ta
008      
210728s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0243915 $2 doi
035    __
$a (PubMed)33444316
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kunc, Vladimír, $u Department of Computer Science, Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic $d 1992- $7 xx0321042
245    10
$a On transformative adaptive activation functions in neural networks for gene expression inference / $c V. Kunc, J. Kléma
520    9_
$a Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D-GEX method employs neural networks to infer the entire profile. However, the original D-GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D-GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.
650    12
$a výpočetní biologie $7 D019295
650    12
$a stanovení celkové genové exprese $7 D020869
650    12
$a genové regulační sítě $7 D053263
650    _2
$a lidé $7 D006801
650    12
$a neuronové sítě $7 D016571
650    12
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kléma, Jiří $u Department of Computer Science, Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 1 (2021), s. e0243915
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33444316 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20240805142658 $b ABA008
999    __
$a ok $b bmc $g 1690299 $s 1139892
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 16 $c 1 $d e0243915 $e 20210114 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...