-
Je něco špatně v tomto záznamu ?
On transformative adaptive activation functions in neural networks for gene expression inference
V. Kunc, J. Kléma
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- neuronové sítě * MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom * MeSH
- výpočetní biologie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D-GEX method employs neural networks to infer the entire profile. However, the original D-GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D-GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21019446
- 003
- CZ-PrNML
- 005
- 20240805142700.0
- 007
- ta
- 008
- 210728s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0243915 $2 doi
- 035 __
- $a (PubMed)33444316
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kunc, Vladimír, $u Department of Computer Science, Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic $d 1992- $7 xx0321042
- 245 10
- $a On transformative adaptive activation functions in neural networks for gene expression inference / $c V. Kunc, J. Kléma
- 520 9_
- $a Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D-GEX method employs neural networks to infer the entire profile. However, the original D-GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D-GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.
- 650 12
- $a výpočetní biologie $7 D019295
- 650 12
- $a stanovení celkové genové exprese $7 D020869
- 650 12
- $a genové regulační sítě $7 D053263
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a neuronové sítě $7 D016571
- 650 12
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kléma, Jiří $u Department of Computer Science, Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 1 (2021), s. e0243915
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33444316 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20240805142658 $b ABA008
- 999 __
- $a ok $b bmc $g 1690299 $s 1139892
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 16 $c 1 $d e0243915 $e 20210114 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20210728