• Something wrong with this record ?

HFE and ALK3 act in the same signaling pathway

L. Traeger, J. Schnittker, DY. Dogan, D. Oguama, T. Kuhlmann, MU. Muckenthaler, J. Krijt, EI. Urzica, AU. Steinbicker

. 2020 ; 160 (-) : 501-505. [pub] 20200827

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Hepcidin deficiency leads to iron overload by increased dietary iron uptake and iron release from storage cells. The most frequent mutation in Hfe leads to reduced hepcidin expression and thereby causes iron overload. Recent findings suggested that HFE activates hepcidin expression predominantly via the BMP type I receptor ALK3. Here, we investigated whether HFE exclusively utilizes ALK3 or other signaling mechanisms also. We generated mice with double deficiency of Hfe and hepatocyte-specific Alk3 and compared the iron overload phenotypes of these double knockout mice to single hepatocyte-specific Alk3 deficient or Hfe knockout mice. Double Hfe-/-/hepatic Alk3fl/fl;Alb-Cre knockouts develop a similar iron overload phenotype compared to single hepatocyte-specific Alk3 deficient mice hallmarked by serum iron levels, tissue iron content and hepcidin levels of similar grades. HFE protein levels were increased in Alk3fl/fl;Alb-Cre mice compared to Alk3fl/fl mice, which was caused by iron overload - and not by Alk3 deficiency. The data provide evidence by genetic means that 1. HFE exclusively uses the BMP type I receptor ALK3 to induce hepcidin expression and 2. HFE protein expression is induced by iron overload, which further emphasizes the iron sensing function of HFE.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019809
003      
CZ-PrNML
005      
20210830101420.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.freeradbiomed.2020.08.023 $2 doi
035    __
$a (PubMed)32861780
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Traeger, L $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: ltrager1@mgh.harvard.edu
245    10
$a HFE and ALK3 act in the same signaling pathway / $c L. Traeger, J. Schnittker, DY. Dogan, D. Oguama, T. Kuhlmann, MU. Muckenthaler, J. Krijt, EI. Urzica, AU. Steinbicker
520    9_
$a Hepcidin deficiency leads to iron overload by increased dietary iron uptake and iron release from storage cells. The most frequent mutation in Hfe leads to reduced hepcidin expression and thereby causes iron overload. Recent findings suggested that HFE activates hepcidin expression predominantly via the BMP type I receptor ALK3. Here, we investigated whether HFE exclusively utilizes ALK3 or other signaling mechanisms also. We generated mice with double deficiency of Hfe and hepatocyte-specific Alk3 and compared the iron overload phenotypes of these double knockout mice to single hepatocyte-specific Alk3 deficient or Hfe knockout mice. Double Hfe-/-/hepatic Alk3fl/fl;Alb-Cre knockouts develop a similar iron overload phenotype compared to single hepatocyte-specific Alk3 deficient mice hallmarked by serum iron levels, tissue iron content and hepcidin levels of similar grades. HFE protein levels were increased in Alk3fl/fl;Alb-Cre mice compared to Alk3fl/fl mice, which was caused by iron overload - and not by Alk3 deficiency. The data provide evidence by genetic means that 1. HFE exclusively uses the BMP type I receptor ALK3 to induce hepcidin expression and 2. HFE protein expression is induced by iron overload, which further emphasizes the iron sensing function of HFE.
650    _2
$a zvířata $7 D000818
650    _2
$a receptory morfogenetických kostních proteinů typu I $7 D052005
650    _2
$a protein hemochromatózy $x genetika $7 D000071020
650    12
$a hepcidiny $x genetika $7 D064451
650    _2
$a MHC antigeny I. třídy $x genetika $7 D015395
650    12
$a přetížení železem $x genetika $7 D019190
650    _2
$a játra $x metabolismus $7 D008099
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a signální transdukce $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Schnittker, J $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: j_schn55@uni-muenster.de
700    1_
$a Dogan, D Y $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: d_doga04@uni-muenster.de
700    1_
$a Oguama, D $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: david.oguama@ukmuester.de
700    1_
$a Kuhlmann, T $u Institute of Neuropathology, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: tanja.kuhlmann@ukmuenster.de
700    1_
$a Muckenthaler, M U $u Department of Pediatric Oncology, Hematology and Immunology, Molecular Medicine Partnership (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany. Electronic address: martina.muckenthaler@med.uni-heidelberg.de
700    1_
$a Krijt, J $u Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address: Jan.Krijt@lf1.cuni.cz
700    1_
$a Urzica, E I $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: eurzi_01@uni-muenster.de
700    1_
$a Steinbicker, A U $u Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany. Electronic address: Andrea.steinbicker@ukmuenster.de
773    0_
$w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 160, č. - (2020), s. 501-505
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32861780 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101420 $b ABA008
999    __
$a ok $b bmc $g 1690591 $s 1140255
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 160 $c - $d 501-505 $e 20200827 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...