• Je něco špatně v tomto záznamu ?

CRAC channel opening is determined by a series of Orai1 gating checkpoints in the transmembrane and cytosolic regions

A. Tiffner, R. Schober, C. Höglinger, D. Bonhenry, S. Pandey, V. Lunz, M. Sallinger, I. Frischauf, M. Fahrner, S. Lindinger, L. Maltan, S. Berlansky, M. Stadlbauer, R. Schindl, R. Ettrich, C. Romanin, I. Derler

. 2021 ; 296 (-) : 100224. [pub] 20201229

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21026264

Grantová podpora
P 27641 Austrian Science Fund FWF - Austria
P 28701 Austrian Science Fund FWF - Austria

The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21026264
003      
CZ-PrNML
005      
20211026133041.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.RA120.015548 $2 doi
035    __
$a (PubMed)33361160
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Tiffner, Adéla $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
245    10
$a CRAC channel opening is determined by a series of Orai1 gating checkpoints in the transmembrane and cytosolic regions / $c A. Tiffner, R. Schober, C. Höglinger, D. Bonhenry, S. Pandey, V. Lunz, M. Sallinger, I. Frischauf, M. Fahrner, S. Lindinger, L. Maltan, S. Berlansky, M. Stadlbauer, R. Schindl, R. Ettrich, C. Romanin, I. Derler
520    9_
$a The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.
650    _2
$a substituce aminokyselin $7 D019943
650    _2
$a bakteriální proteiny $x genetika $x metabolismus $7 D001426
650    _2
$a vazebná místa $7 D001665
650    _2
$a vápník $x metabolismus $7 D002118
650    12
$a vápníková signalizace $7 D020013
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a reportérové geny $7 D017930
650    _2
$a genetické vektory $x chemie $x metabolismus $7 D005822
650    _2
$a zelené fluorescenční proteiny $x genetika $x metabolismus $7 D049452
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a gating iontového kanálu $x genetika $7 D015640
650    _2
$a liposomy $x chemie $x metabolismus $7 D008081
650    _2
$a luminescentní proteiny $x genetika $x metabolismus $7 D008164
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a mutace $7 D009154
650    _2
$a nádorové proteiny $x chemie $x genetika $x metabolismus $7 D009363
650    _2
$a protein ORAI1 $x chemie $x genetika $x metabolismus $7 D000071740
650    _2
$a metoda terčíkového zámku $7 D018408
650    _2
$a fosfatidylcholiny $x chemie $x metabolismus $7 D010713
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů, alfa-helix $7 D000072756
650    _2
$a konformace proteinů, beta-řetězec $7 D000072757
650    _2
$a interakční proteinové domény a motivy $7 D054730
650    _2
$a rekombinantní proteiny $x chemie $x genetika $x metabolismus $7 D011994
650    _2
$a protein STIM1 $x chemie $x genetika $x metabolismus $7 D000071737
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Schober, Romana $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Höglinger, Carmen $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Bonhenry, Daniel $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Nove Hrady, Czechia
700    1_
$a Pandey, Saurabh $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Nove Hrady, Czechia
700    1_
$a Lunz, Victoria $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Sallinger, Matthias $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Frischauf, Irene $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Fahrner, Marc $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Lindinger, Sonja $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Maltan, Lena $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Berlansky, Sascha $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Stadlbauer, Michael $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Schindl, Rainer $u Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
700    1_
$a Ettrich, Rudiger $u College of Biomedical Sciences, Larkin University, Miami, Florida, USA; Faculty of Mathematics and Physics, Charles University, Prague, Czechia; Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
700    1_
$a Romanin, Christoph $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Derler, Isabella $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria. Electronic address: Isabella.derler@jku.at
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 296, č. - (2021), s. 100224
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33361160 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133047 $b ABA008
999    __
$a ok $b bmc $g 1715088 $s 1146771
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 296 $c - $d 100224 $e 20201229 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
GRA    __
$a P 27641 $p Austrian Science Fund FWF $2 Austria
GRA    __
$a P 28701 $p Austrian Science Fund FWF $2 Austria
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...