• Je něco špatně v tomto záznamu ?

Structural basis of rotavirus RNA chaperone displacement and RNA annealing

JPK. Bravo, K. Bartnik, L. Venditti, J. Acker, EH. Gail, A. Colyer, C. Davidovich, DC. Lamb, R. Tuma, AN. Calabrese, A. Borodavka

. 2021 ; 118 (41) : . [pub] 20211012

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003472

Grantová podpora
Wellcome Trust - United Kingdom
213437/Z/18/Z Wellcome Trust - United Kingdom
BB/M011151/1 Biotechnology and Biological Sciences Research Council - United Kingdom
220628/Z/20/Z Wellcome Trust - United Kingdom
BB/M012573/1 Biotechnology and Biological Sciences Research Council - United Kingdom
208385/Z/17/Z Wellcome Trust - United Kingdom
108466/Z/15/Z Wellcome Trust - United Kingdom

E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003472
003      
CZ-PrNML
005      
20220127150208.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.2100198118 $2 doi
035    __
$a (PubMed)34615715
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bravo, Jack P K $u Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom $u Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
245    10
$a Structural basis of rotavirus RNA chaperone displacement and RNA annealing / $c JPK. Bravo, K. Bartnik, L. Venditti, J. Acker, EH. Gail, A. Colyer, C. Davidovich, DC. Lamb, R. Tuma, AN. Calabrese, A. Borodavka
520    9_
$a Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.
650    _2
$a elektronová kryomikroskopie $7 D020285
650    _2
$a genom virový $x genetika $7 D016679
650    _2
$a molekulární modely $7 D008958
650    _2
$a molekulární chaperony $x metabolismus $7 D018832
650    _2
$a sbalování RNA $x genetika $7 D059370
650    _2
$a RNA virová $x genetika $7 D012367
650    _2
$a proteiny vázající RNA $x metabolismus $7 D016601
650    _2
$a ribonukleoproteiny $x metabolismus $7 D012261
650    _2
$a Rotavirus $x genetika $x růst a vývoj $x metabolismus $7 D012401
650    _2
$a zabalení virového genomu $x genetika $7 D000086482
650    _2
$a virové nestrukturální proteiny $x metabolismus $7 D017361
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bartnik, Kira $u Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
700    1_
$a Venditti, Luca $u Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
700    1_
$a Acker, Julia $u Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
700    1_
$a Gail, Emma H $u Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia $u Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
700    1_
$a Colyer, Alice $u Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
700    1_
$a Davidovich, Chen $u Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia $u Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
700    1_
$a Lamb, Don C $u Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
700    1_
$a Tuma, Roman $u Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom $u Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
700    1_
$a Calabrese, Antonio N $u Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
700    1_
$a Borodavka, Alexander $u Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ab2677@cam.ac.uk $u Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom $u Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 118, č. 41 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34615715 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150205 $b ABA008
999    __
$a ok $b bmc $g 1751046 $s 1154621
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 118 $c 41 $e 20211012 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a 213437/Z/18/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$a BB/M011151/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 220628/Z/20/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$a BB/M012573/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 208385/Z/17/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$a 108466/Z/15/Z $p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace