• Je něco špatně v tomto záznamu ?

Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis

O. Profant, Z. Bureš, Z. Balogová, J. Betka, Z. Fík, M. Chovanec, J. Voráček

. 2021 ; 11 (1) : 18376. [pub] 20210915

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003732

Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003732
003      
CZ-PrNML
005      
20220127145925.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-021-97819-x $2 doi
035    __
$a (PubMed)34526580
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Profant, Oliver $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
245    10
$a Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis / $c O. Profant, Z. Bureš, Z. Balogová, J. Betka, Z. Fík, M. Chovanec, J. Voráček
520    9_
$a Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    12
$a klinické rozhodování $7 D000066491
650    _2
$a rozhodovací stromy $7 D003663
650    12
$a management nemoci $7 D019468
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a sluch $7 D006309
650    _2
$a sluchové testy $7 D006320
650    _2
$a lidé $7 D006801
650    12
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a vestibulární schwannom $x diagnóza $x terapie $7 D009464
650    _2
$a ROC křivka $7 D012372
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a řízené strojové učení $7 D000069553
650    _2
$a určení symptomu $7 D063189
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bureš, Zbyněk $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00, Prague 6, Czech Republic. zbynek.bures@cvut.cz
700    1_
$a Balogová, Zuzana $u Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic
700    1_
$a Betka, Jan $u Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czech Republic
700    1_
$a Fík, Zdeněk $u Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czech Republic
700    1_
$a Chovanec, Martin $u Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic
700    1_
$a Voráček, Jan $u Faculty of Management, Prague University of Economics and Business, Jindrichuv Hradec, Czech Republic
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 11, č. 1 (2021), s. 18376
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34526580 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145921 $b ABA008
999    __
$a ok $b bmc $g 1751249 $s 1154881
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 11 $c 1 $d 18376 $e 20210915 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...