-
Je něco špatně v tomto záznamu ?
Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis
O. Profant, Z. Bureš, Z. Balogová, J. Betka, Z. Fík, M. Chovanec, J. Voráček
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- dospělí MeSH
- klinické rozhodování * MeSH
- lidé středního věku MeSH
- lidé MeSH
- management nemoci * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení MeSH
- ROC křivka MeSH
- rozhodovací stromy MeSH
- senioři MeSH
- sluch MeSH
- sluchové testy MeSH
- strojové učení * MeSH
- určení symptomu MeSH
- vestibulární schwannom diagnóza terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003732
- 003
- CZ-PrNML
- 005
- 20220127145925.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-021-97819-x $2 doi
- 035 __
- $a (PubMed)34526580
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Profant, Oliver $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- 245 10
- $a Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis / $c O. Profant, Z. Bureš, Z. Balogová, J. Betka, Z. Fík, M. Chovanec, J. Voráček
- 520 9_
- $a Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 12
- $a klinické rozhodování $7 D000066491
- 650 _2
- $a rozhodovací stromy $7 D003663
- 650 12
- $a management nemoci $7 D019468
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a sluch $7 D006309
- 650 _2
- $a sluchové testy $7 D006320
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a vestibulární schwannom $x diagnóza $x terapie $7 D009464
- 650 _2
- $a ROC křivka $7 D012372
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a řízené strojové učení $7 D000069553
- 650 _2
- $a určení symptomu $7 D063189
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bureš, Zbyněk $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00, Prague 6, Czech Republic. zbynek.bures@cvut.cz
- 700 1_
- $a Balogová, Zuzana $u Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Betka, Jan $u Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Fík, Zdeněk $u Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Chovanec, Martin $u Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Voráček, Jan $u Faculty of Management, Prague University of Economics and Business, Jindrichuv Hradec, Czech Republic
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 11, č. 1 (2021), s. 18376
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34526580 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145921 $b ABA008
- 999 __
- $a ok $b bmc $g 1751249 $s 1154881
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 11 $c 1 $d 18376 $e 20210915 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20220113