• Je něco špatně v tomto záznamu ?

TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51K133A

JH. Ko, MY. Son, Q. Zhou, L. Molnarova, L. Song, J. Mlcouskova, A. Jekabsons, C. Montagna, L. Krejci, P. Hasty

. 2020 ; 33 (12) : 108543. [pub] 20201222

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004754

Grantová podpora
R01 ES022054 NIEHS NIH HHS - United States
R01 CA188032 NCI NIH HHS - United States
P01 AG017242 NIA NIH HHS - United States
Wellcome Trust - United Kingdom
P30 CA013330 NCI NIH HHS - United States
206292/E/17/Z Wellcome Trust - United Kingdom

DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004754
003      
CZ-PrNML
005      
20220127145021.0
007      
ta
008      
220113s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.celrep.2020.108543 $2 doi
035    __
$a (PubMed)33357432
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ko, Jun Ho $u Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78245, USA
245    10
$a TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51K133A / $c JH. Ko, MY. Son, Q. Zhou, L. Molnarova, L. Song, J. Mlcouskova, A. Jekabsons, C. Montagna, L. Krejci, P. Hasty
520    9_
$a DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
650    _2
$a zvířata $7 D000818
650    12
$a replikace DNA $7 D004261
650    _2
$a exodeoxyribonukleasy $x genetika $x metabolismus $7 D005090
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    12
$a mutace $7 D009154
650    _2
$a fosfoproteiny $x genetika $x metabolismus $7 D010750
650    _2
$a rekombinasa Rad51 $x biosyntéza $x genetika $x metabolismus $7 D051135
650    _2
$a transfekce $7 D014162
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Son, Mi Young $u Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78245, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78245, USA
700    1_
$a Zhou, Qing $u Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78245, USA
700    1_
$a Molnarova, Lucia $u Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
700    1_
$a Song, Lambert $u Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
700    1_
$a Mlcouskova, Jarmila $u International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Jekabsons, Atis $u National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Montagna, Cristina $u Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
700    1_
$a Krejci, Lumir $u National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic; Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Hasty, Paul $u Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78245, USA; The Cancer Therapy & Research Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78245, USA. Electronic address: hastye@uthscsa.edu
773    0_
$w MED00188029 $t Cell reports $x 2211-1247 $g Roč. 33, č. 12 (2020), s. 108543
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33357432 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145017 $b ABA008
999    __
$a ok $b bmc $g 1752054 $s 1155903
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 33 $c 12 $d 108543 $e 20201222 $i 2211-1247 $m Cell reports $n Cell Rep $x MED00188029
GRA    __
$a R01 ES022054 $p NIEHS NIH HHS $2 United States
GRA    __
$a R01 CA188032 $p NCI NIH HHS $2 United States
GRA    __
$a P01 AG017242 $p NIA NIH HHS $2 United States
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a P30 CA013330 $p NCI NIH HHS $2 United States
GRA    __
$a 206292/E/17/Z $p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...