TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51K133A
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 ES022054
NIEHS NIH HHS - United States
R01 CA188032
NCI NIH HHS - United States
P01 AG017242
NIA NIH HHS - United States
Wellcome Trust - United Kingdom
P30 CA013330
NCI NIH HHS - United States
206292/E/17/Z
Wellcome Trust - United Kingdom
PubMed
33357432
PubMed Central
PMC7896812
DOI
10.1016/j.celrep.2020.108543
PII: S2211-1247(20)31532-1
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage tolerance, double-strand break repair, genomic instability, homologous recombination, replication fork maintenance,
- MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- fosfoproteiny genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- myši MeSH
- rekombinasa Rad51 biosyntéza genetika metabolismus MeSH
- replikace DNA * MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- exodeoxyribonukleasy MeSH
- fosfoproteiny MeSH
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH
- TREX2 protein, human MeSH Prohlížeč
DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
Department of Biology Masaryk University Kamenice 5 A7 625 00 Brno Czech Republic
Department of Genetics Albert Einstein College of Medicine Yeshiva University Bronx NY 10461 USA
Zobrazit více v PubMed
Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, and Lopes M (2016). A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat. Commun 7, 10660. PubMed PMC
Andriani GA, Almeida VP, Faggioli F, Mauro M, Tsai WL, Santambrogio L, Maslov A, Gadina M, Campisi J, Vijg J, and Montagna C (2016). Whole Chromosome Instability induces senescence and promotes SASP. Sci. Rep 6, 35218. PubMed PMC
Araki K, Araki M, and Yamamura K (1997). Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. 25, 868–872. PubMed PMC
Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R, et al. (2013). Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol 20, 347–354. PubMed PMC
Bhat KP, and Cortez D (2018). RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol 25, 446–453. PubMed PMC
Branzei D, and Foiani M (2007). Template switching: from replication fork repair to genome rearrangements. Cell 131, 1228–1230. PubMed
Branzei D, and Psakhye I (2016). DNA damage tolerance. Curr. Opin. Cell Biol 40, 137–144. PubMed
Carr AM, and Lambert S (2013). Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J. Mol. Biol 425, 4733–744. PubMed
Chen PL, Chen CF, Chen Y, Xiao J, Sharp ZD, and Lee WH (1998). The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl. Acad. Sci. USA 95, 5287–5292. PubMed PMC
Chen MJ, Ma SM, Dumitrache LC, and Hasty P (2007). Biochemical and cellular characteristics of the 3′ -> 5′ exonuclease TREX2. Nucleic Acids Res. 35, 2682–2694. PubMed PMC
Chi P, Van Komen S, Sehorn MG, Sigurdsson S, and Sung P (2006). Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair (Amst.) 5, 381–391. PubMed
Choi YJ, Son MY, and Hasty P (2011). One-step knockin for inducible expression in mouse embryonic stem cells. Genesis 49, 92–97. PubMed PMC
Dumitrache LC, Hu L, and Hasty P (2009). TREX2 exonuclease defective cells exhibit double-strand breaks and chromosomal fragments but not Robertsonian translocations. Mutat. Res 662, 84–87. PubMed PMC
Dumitrache LC, Hu L, Son MY, Li H, Wesevich A, Scully R, Stark J, and Hasty P (2011). Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair. Genetics 188, 787–797. PubMed PMC
Friedrich G, and Soriano P (1991). Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523. PubMed
Fujihara Y, and Ikawa M (2014). CRISPR/Cas9-based genome editing in mice by single plasmid injection. Methods Enzymol. 546, 319–336. PubMed
Ghosal G, and Chen J (2013). DNA damage tolerance: a double-edged sword guarding the genome. Transl. Cancer Res 2, 107–129. PubMed PMC
Guenatri M, Bailly D, Maison C, and Almouzni G (2004). Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol 166, 493–505. PubMed PMC
Hashimoto K, Yonemori K, Shimizu C, Hirakawa A, Yamamoto H, Ono M, Hirata T, Kouno T, Tamura K, Katsumata N, et al. (2010). A retrospective study of the impact of age on patterns of care for elderly patients with metastatic breast cancer. Med. Oncol 28, 434–440. PubMed
Hasty P, Rivera-Pérez J, Chang C, and Bradley A (1991). Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol 11, 4509–517. PubMed PMC
Hendel A, Krijger PH, Diamant N, Goren Z, Langerak P, Kim J, Reissner T, Lee KY, Geacintov NE, Carell T, et al. (2011). PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet. 7, e1002262. PubMed PMC
Holcomb VB, Kim TM, Dumitrache LC, Ma SM, Chen MJ, and Hasty P (2007). HPRT minigene generates chimeric transcripts as a by-product of gene targeting. Genesis 45, 275–281. PubMed
Hu L, Kim TM, Son MY, Kim SA, Holland CL, Tateishi S, Kim DH, Yew PR, Montagna C, Dumitrache LC, and Hasty P (2013).Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 501, 569–572. PubMed PMC
Huang Y, Leung JW, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J, and Li L (2014). Modularized functions of the Fanconi anemia core complex. Cell Rep. 7, 1849–1857. PubMed PMC
Jansen JG, Tsaalbi-Shtylik A, and de Wind N (2015). Roles of mutagenic translesion synthesis in mammalian genome stability, health and disease. DNA Repair (Amst) 29, 56–64. PubMed
Kanao R, Masuda Y, Deguchi S, Yumoto-Sugimoto M, Hanaoka F, and Masutani C (2015). Relevance of simultaneous mono-ubiquitinations of multiple units of PCNA homo-trimers in DNA damage tolerance. PLoS ONE 10, e0118775. PubMed PMC
Kim TM, Choi YJ, Ko JH, and Hasty P (2008). High-throughput knock-in coupling gene targeting with the HPRT minigene and Cre-mediated recombination. Genesis 46, 732–737. PubMed
Kim DH, Budhavarapu VN, Herrera CR, Nam HW, Kim YS, and Yew PR (2010). The CRL4Cdt2 ubiquitin ligase mediates the proteolysis of cyclin-dependent kinase inhibitor Xic1 through a direct association with PCNA. Mol. Cell. Biol 30, 4120–4133. PubMed PMC
Kim TM, Ko JH, Choi YJ, Hu L, and Hasty P (2011). The phenotype of FancB-mutant mouse embryonic stem cells. Mutat. Res 712, 20–27. PubMed PMC
Kim TM, Ko JH, Hu L, Kim SA, Bishop AJ, Vijg J, Montagna C, and Hasty P (2012). RAD51 mutants cause replication defects and chromosomal instability. Mol. Cell. Biol 32, 3663–3680. PubMed PMC
Kolinjivadi AM, Crismani W, and Ngeow J (2020). Emerging functions of Fanconi anemia genes in replication fork protection pathways. Hum. Mol. Genet 29 (R2), R158–R164. PubMed
Kondratova A, Watanabe T, Marotta M, Cannon M, Segall AM, Serre D, and Tanaka H (2015). Replication fork integrity and intra-S phase checkpoint suppress gene amplification. Nucleic Acids Res. 43, 2678–2690. PubMed PMC
Krejci L, Altmannova V, Sirek M, and Zhao X (2012). Homologous recombination and its regulation. Nucleic Acids Res. 40, 5795–5818. PubMed PMC
Krijger PH, Lee KY, Wit N, van den Berk PC, Wu X, Roest HP, Maas A, Ding H, Hoeijmakers JH, Myung K, and Jacobs H (2011). HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst.) 10, 438–444. PubMed PMC
Lee KY, and Myung K (2008). PCNA modifications for regulation of post-replication repair pathways. Mol. Cells 26, 5–11. PubMed PMC
Liu W, Zhou M, Li Z, Li H, Polaczek P, Dai H, Wu Q, Liu C, Karanja KK, Popuri V, et al. (2016). A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. EBioMedicine 6, 73–86. PubMed PMC
Marini V, and Krejci L (2012). Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst.) 11, 789–798. PubMed PMC
Mazur DJ, and Perrino FW (1999). Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′–>5′ exonucleases. J. Biol. Chem 274, 19655–19660. PubMed
Mazur DJ, and Perrino FW (2001). Excision of 3′ termini by the Trex1 and TREX2 3′–>5′ exonucleases. Characterization of the recombinant proteins. J. Biol. Chem 276, 17022–17029. PubMed
McCulloch SD, and Kunkel TA (2008). The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161. PubMed PMC
Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M, Ling C, Rooimans MA, Bier P, Hoatlin M, Pals G, et al. (2004). X-linked inheritance of Fanconi anemia complementation group B. Nat. Genet 36, 1219–1224. PubMed
Meuth M (1989). The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp. Cell Res 181, 305–316. PubMed
Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K, Mutreja K, Ursich S, Ray Chaudhuri A, Nussenzweig A, Janscak P, and Lopes M (2017). Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat. Commun 8, 859. PubMed PMC
Montague TG, Cruz JM, Gagnon JA, Church GM, and Valen E (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407. PubMed PMC
Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, and Myung K (2008). Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. USA 105, 12411–12416. PubMed PMC
Perrino FW, Harvey S, McMillin S, and Hollis T (2005). The human TREX2 3′ -> 5′-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. J. Biol. Chem 280, 15212–15218. PubMed
Petermann E, Orta ML, Issaeva N, Schultz N, and Helleday T (2010). Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502. PubMed PMC
Pilzecker B, Buoninfante OA, and Jacobs H (2019). DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res. 47, 7163–7181. PubMed PMC
Prakash S, Johnson RE, and Prakash L (2005). Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem 74, 317–353. PubMed
Rajendra E, Oestergaard VH, Langevin F, Wang M, Dornan GL, Patel KJ, and Passmore LA (2014). The genetic and biochemical basis of FANCD2 monoubiquitination. Mol. Cell 54, 858–869. PubMed PMC
Rickman K, and Smogorzewska A (2019). Advances in understanding DNA processing and protection at stalled replication forks. J. Cell Biol 218, 1096–1107. PubMed PMC
Roy R, Chun J, and Powell SN (2011). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78. PubMed PMC
San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, and Sung P (2006). Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J. Biol. Chem 281, 11649–11657. PubMed PMC
Schlacher K, Christ N, Siaud N, Egashira A, Wu H, and Jasin M (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542. PubMed PMC
Schlacher K, Wu H, and Jasin M (2012). A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116. PubMed PMC
Schneider CA, Rasband WS, and Eliceiri KW (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. PubMed PMC
Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, and Bradley A (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810. PubMed
Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, and Sung P (2001). Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 15, 3308–3318. PubMed PMC
Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, and Cortez D (2011). Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25, 1320–1327. PubMed PMC
Sirbu BM, Couch FB, and Cortez D (2012). Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc 7, 594–605. PubMed PMC
Sogo JM, Lopes M, and Foiani M (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602. PubMed
Son MY, and Hasty P (2019). Homologous recombination defects and how they affect replication fork maintenance. AIMS Genet. 5, 192–211. PubMed PMC
Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, and Krejci L (2018). Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res. 46, 3967–3980. PubMed PMC
Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, and D’Andrea AD (2002). S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420. PubMed
Tao SS, Wu GC, Zhang Q, Zhang TP, Leng RX, Pan HF, and Ye DQ (2019). TREX1 As a Potential Therapeutic Target for Autoimmune and Inflammatory Diseases. Curr. Pharm. Des 25, 3239–3247. PubMed
Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, et al. (2010). Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet 42, 406–409. PubMed
Vujanovic M, Krietsch J, Raso MC, Terraneo N, Zellweger R, Schmid JA, Taglialatela A, Huang JW, Holland CL, Zwicky K, et al. (2017). Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Mol. Cell 67, 882–890.e885. PubMed PMC
Wang W (2007). Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet 8, 735–748. PubMed
Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R, Vindigni A, and Lopes M (2015). Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol 208, 563–579. PubMed PMC