• Je něco špatně v tomto záznamu ?

Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells

SK. Bhangu, S. Fernandes, GL. Beretta, S. Tinelli, M. Cassani, A. Radziwon, M. Wojnilowicz, S. Sarpaki, I. Pilatis, N. Zaffaroni, G. Forte, F. Caruso, M. Ashokkumar, F. Cavalieri

. 2022 ; 34 (13) : e2107964. [pub] 20220218

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018890

Grantová podpora
FT140100873 Australian Research Council
GNT1135806 National Health and Medical Research Council Senior Principal Research Fellowship
European Union's Horizon 2020
690901 Marie Skłodowska-Curie
CZ.02.1.01/0.0/0.0/15_003/0000492 European Social Fund and European Regional Development Fund-Project MAGNET
European Union's horizon
800924 Marie Skłodowska-Curie

Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants. The nanodrugs preferentially interact with lipid rafts in the mitochondria of cancer cells. The mitochondrial localization of the nanodrugs plays a key role in inducing reactive oxygen species mediated selective death of breast cancer, colorectal carcinoma, ovarian carcinoma, and drug-resistant cell lines. Only marginal cytotoxicity (80-100% cell viability) toward fibroblasts and cardiomyocytes is observed, even after administration of high doses of the nanodrug (25-40 μg mL-1 ). Penetration, cytotoxicity, and selectivity of the nanodrugs in tumor-mimicking tissues are validated by using a 3D coculture of cancer and healthy cells and 3D cell-collagen constructs in a perfusion bioreactor. The nanodrugs exhibit tropism for lung and limited accumulation in the liver and spleen, as suggested by in vivo biodistribution studies. The results highlight the potential of this approach to transform the structure and bioactivity of anticancer drugs and antibiotics bearing sono-active moieties.

000      
00000naa a2200000 a 4500
001      
bmc22018890
003      
CZ-PrNML
005      
20220804135148.0
007      
ta
008      
220720s2022 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/adma.202107964 $2 doi
035    __
$a (PubMed)35100658
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bhangu, Sukhvir Kaur $u School of Science, RMIT University, Melbourne, Victoria, 3000, Australia $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia $u School of Chemistry, The University of Melbourne, Victoria, 3010, Australia $1 https://orcid.org/0000000298104304
245    10
$a Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells / $c SK. Bhangu, S. Fernandes, GL. Beretta, S. Tinelli, M. Cassani, A. Radziwon, M. Wojnilowicz, S. Sarpaki, I. Pilatis, N. Zaffaroni, G. Forte, F. Caruso, M. Ashokkumar, F. Cavalieri
520    9_
$a Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants. The nanodrugs preferentially interact with lipid rafts in the mitochondria of cancer cells. The mitochondrial localization of the nanodrugs plays a key role in inducing reactive oxygen species mediated selective death of breast cancer, colorectal carcinoma, ovarian carcinoma, and drug-resistant cell lines. Only marginal cytotoxicity (80-100% cell viability) toward fibroblasts and cardiomyocytes is observed, even after administration of high doses of the nanodrug (25-40 μg mL-1 ). Penetration, cytotoxicity, and selectivity of the nanodrugs in tumor-mimicking tissues are validated by using a 3D coculture of cancer and healthy cells and 3D cell-collagen constructs in a perfusion bioreactor. The nanodrugs exhibit tropism for lung and limited accumulation in the liver and spleen, as suggested by in vivo biodistribution studies. The results highlight the potential of this approach to transform the structure and bioactivity of anticancer drugs and antibiotics bearing sono-active moieties.
650    _2
$a antibiotika antitumorózní $x chemie $7 D000903
650    _2
$a doxorubicin $x chemie $x farmakologie $7 D004317
650    _2
$a lidé $7 D006801
650    12
$a nanočástice $x chemie $7 D053758
650    12
$a nádory vaječníků $7 D010051
650    _2
$a tkáňová distribuce $7 D014018
655    _2
$a časopisecké články $7 D016428
700    1_
$a Fernandes, Soraia $u International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia $1 https://orcid.org/0000000175861241
700    1_
$a Beretta, Giovanni Luca $u Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy $1 https://orcid.org/0000000259614109
700    1_
$a Tinelli, Stella $u Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
700    1_
$a Cassani, Marco $u International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia $1 https://orcid.org/0000000184377734
700    1_
$a Radziwon, Agata $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
700    1_
$a Wojnilowicz, Marcin $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
700    1_
$a Sarpaki, Sophia $u BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
700    1_
$a Pilatis, Irinaios $u BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
700    1_
$a Zaffaroni, Nadia $u Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy $1 https://orcid.org/0000000246690890
700    1_
$a Forte, Giancarlo $u International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia $1 https://orcid.org/0000000213411023
700    1_
$a Caruso, Frank $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia $1 https://orcid.org/000000020197497X
700    1_
$a Ashokkumar, Muthupandian $u School of Chemistry, The University of Melbourne, Victoria, 3010, Australia $1 https://orcid.org/0000000284421499
700    1_
$a Cavalieri, Francesca $u School of Science, RMIT University, Melbourne, Victoria, 3000, Australia $u Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", via della ricerca scientifica 1, Rome, 00133, Italy $1 https://orcid.org/0000000153915069
773    0_
$w MED00006520 $t Advanced materials (Deerfield Beach, Fla.) $x 1521-4095 $g Roč. 34, č. 13 (2022), s. e2107964
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35100658 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135142 $b ABA008
999    __
$a ok $b bmc $g 1822466 $s 1170133
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 34 $c 13 $d e2107964 $e 20220218 $i 1521-4095 $m Advanced materials $n Adv Mater $x MED00006520
GRA    __
$a FT140100873 $p Australian Research Council
GRA    __
$a GNT1135806 $p National Health and Medical Research Council Senior Principal Research Fellowship
GRA    __
$p European Union's Horizon 2020
GRA    __
$a 690901 $p Marie Skłodowska-Curie
GRA    __
$a CZ.02.1.01/0.0/0.0/15_003/0000492 $p European Social Fund and European Regional Development Fund-Project MAGNET
GRA    __
$p European Union's horizon
GRA    __
$a 800924 $p Marie Skłodowska-Curie
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...