• Je něco špatně v tomto záznamu ?

Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns

DE. McGregor, J. Palarea-Albaladejo, PM. Dall, K. Hron, S. Chastin

. 2020 ; 29 (5) : 1447-1465. [pub] 20190725

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23005005

Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23005005
003      
CZ-PrNML
005      
20230425171839.0
007      
ta
008      
230418s2020 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/0962280219864125 $2 doi
035    __
$a (PubMed)31342855
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a McGregor, D E $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK $u Biomathematics and Statistics Scotland, Edinburgh, UK $1 https://orcid.org/0000000325757547
245    10
$a Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns / $c DE. McGregor, J. Palarea-Albaladejo, PM. Dall, K. Hron, S. Chastin
520    9_
$a Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).
650    _2
$a výživa - přehledy $7 D009749
650    12
$a cvičení $7 D015444
650    _2
$a regresní analýza $7 D012044
650    _2
$a proporcionální rizikové modely $7 D016016
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Palarea-Albaladejo, J $u Biomathematics and Statistics Scotland, Edinburgh, UK $1 https://orcid.org/000000030162669X
700    1_
$a Dall, P M $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK
700    1_
$a Hron, K $u Faculty of Science, Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
700    1_
$a Chastin, Sfm $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK $u Department of Movement and Sport Science, Ghent University, Ghent, Belgium
773    0_
$w MED00006126 $t Statistical methods in medical research $x 1477-0334 $g Roč. 29, č. 5 (2020), s. 1447-1465
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31342855 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20230425171835 $b ABA008
999    __
$a ok $b bmc $g 1925227 $s 1191214
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2020 $b 29 $c 5 $d 1447-1465 $e 20190725 $i 1477-0334 $m Statistical methods in medical research $n Stat Methods Med Res $x MED00006126
LZP    __
$a Pubmed-20230418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...