-
Je něco špatně v tomto záznamu ?
Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns
DE. McGregor, J. Palarea-Albaladejo, PM. Dall, K. Hron, S. Chastin
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31342855
DOI
10.1177/0962280219864125
Knihovny.cz E-zdroje
- MeSH
- cvičení * MeSH
- proporcionální rizikové modely MeSH
- regresní analýza MeSH
- výživa - přehledy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).
Biomathematics and Statistics Scotland Edinburgh UK
Department of Movement and Sport Science Ghent University Ghent Belgium
School of Health and Life Science Glasgow Caledonian University Glasgow UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23005005
- 003
- CZ-PrNML
- 005
- 20230425171839.0
- 007
- ta
- 008
- 230418s2020 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/0962280219864125 $2 doi
- 035 __
- $a (PubMed)31342855
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a McGregor, D E $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK $u Biomathematics and Statistics Scotland, Edinburgh, UK $1 https://orcid.org/0000000325757547
- 245 10
- $a Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns / $c DE. McGregor, J. Palarea-Albaladejo, PM. Dall, K. Hron, S. Chastin
- 520 9_
- $a Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).
- 650 _2
- $a výživa - přehledy $7 D009749
- 650 12
- $a cvičení $7 D015444
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a proporcionální rizikové modely $7 D016016
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Palarea-Albaladejo, J $u Biomathematics and Statistics Scotland, Edinburgh, UK $1 https://orcid.org/000000030162669X
- 700 1_
- $a Dall, P M $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK
- 700 1_
- $a Hron, K $u Faculty of Science, Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
- 700 1_
- $a Chastin, Sfm $u School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK $u Department of Movement and Sport Science, Ghent University, Ghent, Belgium
- 773 0_
- $w MED00006126 $t Statistical methods in medical research $x 1477-0334 $g Roč. 29, č. 5 (2020), s. 1447-1465
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31342855 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20230425171835 $b ABA008
- 999 __
- $a ok $b bmc $g 1925227 $s 1191214
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2020 $b 29 $c 5 $d 1447-1465 $e 20190725 $i 1477-0334 $m Statistical methods in medical research $n Stat Methods Med Res $x MED00006126
- LZP __
- $a Pubmed-20230418