-
Je něco špatně v tomto záznamu ?
First trimester prediction models for small-for- gestational age and fetal growth restricted fetuses without the presence of preeclampsia
I. Hromadnikova, K. Kotlabova, L. Krofta
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- biologické markery MeSH
- dítě MeSH
- gestační stáří MeSH
- infertilita * MeSH
- kojenec MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- novorozenec MeSH
- plod metabolismus MeSH
- preeklampsie * genetika MeSH
- první trimestr těhotenství MeSH
- retrospektivní studie MeSH
- růstová retardace plodu genetika diagnóza MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
We established efficient first trimester prediction models for small-for-gestational age (SGA) and fetal growth restriction (FGR) without the presence of preeclampsia (PE) regardless of the gestational age of the onset of the disease [early FGR occurring before 32 gestational week or late FGR occurring after 32 gestational week]. The retrospective study was performed on singleton Caucasian pregnancies (n = 6440) during the period 11/2012-3/2020. Finally, 4469 out of 6440 pregnancies had complete medical records since they delivered in the Institute for the Care of Mother and Child, Prague, Czech Republic. The study included all cases diagnosed with SGA (n = 37) or FGR (n = 82) without PE, and 80 selected normal pregnancies. Four microRNAs (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) identified 75.68 % SGA cases at 10.0 % false positive rate (FPR). Eight microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-126-3p, miR-130b-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) identified 83.80 % SGA cases at 10.0 % FPR. The prediction model for SGA based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by assisted reproductive technology (ART), first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm]. Then 81.08 % and 89.19 % pregnancies developing SGA were identified at 10.0 % FPR in case of utilization of 4 microRNA and 8 microRNA biomarkers. Simplified prediction model for SGA based on limited number of maternal clinical characteristics (maternal age and BMI, an infertility treatment by ART, and 4 microRNAs) does not improve the detection rate of SGA (70.27 % SGA cases at 10.0 % FPR) when compared with prediction model for SGA based just on the expression profile of 4 or 8 microRNAs biomarkers. Seven microRNAs only (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) identified 42.68 % FGR cases at 10.0 % FPR (AUC 0.725). However, the combination of 10 microRNAs only (miR-16-5p, miR-20a-5p, miR-100-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-342-3p, and miR-574-3p) reached a higher discrimination power (AUC 0.774). It identified 40.24 % FGR cases at 10.0 % FPR. The prediction model for any subtype of FGR based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by ART, the parity (nulliparity), the occurrence of SGA or FGR in previous gestation, and the occurrence of any autoimmune disorder, and the presence of chronic hypertension]. Then 64.63 % and 65.85 % pregnancies destinated to develop FGR were identified at 10.0 % FPR in case of utilization of 7 microRNA biomarkers or 10 microRNA biomarkers. When other clinical variables next to those ones mentioned above such as first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm, were added to the prediction model for FGR, the detection power was even increased to 74.39 % cases and 78.05 % cases at 10.0 % FPR.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24000368
- 003
- CZ-PrNML
- 005
- 20240213093131.0
- 007
- ta
- 008
- 240109e20231116enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mcp.2023.101941 $2 doi
- 035 __
- $a (PubMed)37951512
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hromadnikova, Ilona $u Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic. Electronic address: ilona.hromadnikova@lf3.cuni.cz
- 245 10
- $a First trimester prediction models for small-for- gestational age and fetal growth restricted fetuses without the presence of preeclampsia / $c I. Hromadnikova, K. Kotlabova, L. Krofta
- 520 9_
- $a We established efficient first trimester prediction models for small-for-gestational age (SGA) and fetal growth restriction (FGR) without the presence of preeclampsia (PE) regardless of the gestational age of the onset of the disease [early FGR occurring before 32 gestational week or late FGR occurring after 32 gestational week]. The retrospective study was performed on singleton Caucasian pregnancies (n = 6440) during the period 11/2012-3/2020. Finally, 4469 out of 6440 pregnancies had complete medical records since they delivered in the Institute for the Care of Mother and Child, Prague, Czech Republic. The study included all cases diagnosed with SGA (n = 37) or FGR (n = 82) without PE, and 80 selected normal pregnancies. Four microRNAs (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) identified 75.68 % SGA cases at 10.0 % false positive rate (FPR). Eight microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-126-3p, miR-130b-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) identified 83.80 % SGA cases at 10.0 % FPR. The prediction model for SGA based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by assisted reproductive technology (ART), first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm]. Then 81.08 % and 89.19 % pregnancies developing SGA were identified at 10.0 % FPR in case of utilization of 4 microRNA and 8 microRNA biomarkers. Simplified prediction model for SGA based on limited number of maternal clinical characteristics (maternal age and BMI, an infertility treatment by ART, and 4 microRNAs) does not improve the detection rate of SGA (70.27 % SGA cases at 10.0 % FPR) when compared with prediction model for SGA based just on the expression profile of 4 or 8 microRNAs biomarkers. Seven microRNAs only (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) identified 42.68 % FGR cases at 10.0 % FPR (AUC 0.725). However, the combination of 10 microRNAs only (miR-16-5p, miR-20a-5p, miR-100-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-342-3p, and miR-574-3p) reached a higher discrimination power (AUC 0.774). It identified 40.24 % FGR cases at 10.0 % FPR. The prediction model for any subtype of FGR based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by ART, the parity (nulliparity), the occurrence of SGA or FGR in previous gestation, and the occurrence of any autoimmune disorder, and the presence of chronic hypertension]. Then 64.63 % and 65.85 % pregnancies destinated to develop FGR were identified at 10.0 % FPR in case of utilization of 7 microRNA biomarkers or 10 microRNA biomarkers. When other clinical variables next to those ones mentioned above such as first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm, were added to the prediction model for FGR, the detection power was even increased to 74.39 % cases and 78.05 % cases at 10.0 % FPR.
- 650 _2
- $a těhotenství $7 D011247
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a novorozenec $7 D007231
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kojenec $7 D007223
- 650 12
- $a preeklampsie $x genetika $7 D011225
- 650 _2
- $a první trimestr těhotenství $7 D011261
- 650 _2
- $a růstová retardace plodu $x genetika $x diagnóza $7 D005317
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 _2
- $a gestační stáří $7 D005865
- 650 12
- $a mikro RNA $x genetika $x metabolismus $7 D035683
- 650 _2
- $a biologické markery $7 D015415
- 650 12
- $a infertilita $7 D007246
- 650 _2
- $a plod $x metabolismus $7 D005333
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kotlabova, Katerina $u Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic. Electronic address: katerina.kotlabova@lf3.cuni.cz
- 700 1_
- $a Krofta, Ladislav $u Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, 147 00, Czech Republic. Electronic address: ladislav.krofta@upmd.eu
- 773 0_
- $w MED00008642 $t Molecular and cellular probes $x 1096-1194 $g Roč. 72 (20231116), s. 101941
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37951512 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240109 $b ABA008
- 991 __
- $a 20240213093128 $b ABA008
- 999 __
- $a ok $b bmc $g 2049183 $s 1210062
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 72 $c - $d 101941 $e 20231116 $i 1096-1194 $m Molecular and cellular probes $n Mol Cell Probes $x MED00008642
- LZP __
- $a Pubmed-20240109