- 
             Something wrong with this record ?
 
Best practices for instrument settings and raw data analysis in plant flow cytometry
P. Koutecký, T. Smith, J. Loureiro, P. Kron
Language English Country United States
Document type Journal Article, Review
        Grant support
          
              FCT/UIDB/04004/2020 
          
      Centro de Ecologia Funcional   
      
          
              RGPIN-2020-05652 
          
      Natural Sciences and Engineering Research Council of Canada   
      
          
              CENTRO-01-0145-FEDER-000020 
          
      Programa Operacional Regional do Centro   
      
      
 NLK 
   
      Free Medical Journals
   
    from 2003 to 1 year ago
   
      Medline Complete (EBSCOhost)
   
    from 2012-06-01 to 1 year ago
   
      Wiley Free Content
   
    from 2003
    
    PubMed
          
           37807676
           
          
          
    DOI
          
           10.1002/cyto.a.24798
           
          
          
  
    Knihovny.cz E-resources
    
  
              
      
- MeSH
 - Genome Size MeSH
 - Calibration MeSH
 - Ploidies * MeSH
 - Flow Cytometry methods MeSH
 - Reproducibility of Results MeSH
 - Publication type
 - Journal Article MeSH
 - Review MeSH
 
Flow cytometry (FCM) is now the most widely used method to determine ploidy levels and genome size of plants. To get reliable estimates and allow reproducibility of measurements, the methodology should be standardized and follow the best practices in the field. In this article, we discuss instrument calibration and quality control and various instrument and acquisition settings (parameters, flow rate, number of events, scales, use of discriminators, peak positions). These settings must be decided before measurements because they determine the amount and quality of the data and thus influence all downstream analyses. We describe the two main approaches to raw data analysis (gating and histogram modeling), and we discuss their advantages and disadvantages. Finally, we provide a summary of best practice recommendations for data acquisition and raw data analysis in plant FCM.
Agriculture and Agri Food Canada Ottawa Ontario Canada
Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czechia
Department of Integrative Biology University of Guelph Guelph Ontario Canada
References provided by Crossref.org
- 000
 - 00000naa a2200000 a 4500
 
- 001
 - bmc24000435
 
- 003
 - CZ-PrNML
 
- 005
 - 20240213093159.0
 
- 007
 - ta
 
- 008
 - 240109s2023 xxu f 000 0|eng||
 
- 009
 - AR
 
- 024 7_
 - $a 10.1002/cyto.a.24798 $2 doi
 
- 035 __
 - $a (PubMed)37807676
 
- 040 __
 - $a ABA008 $b cze $d ABA008 $e AACR2
 
- 041 0_
 - $a eng
 
- 044 __
 - $a xxu
 
- 100 1_
 - $a Koutecký, Petr $u Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia $1 https://orcid.org/000000023455850X $7 jx20100225013
 
- 245 10
 - $a Best practices for instrument settings and raw data analysis in plant flow cytometry / $c P. Koutecký, T. Smith, J. Loureiro, P. Kron
 
- 520 9_
 - $a Flow cytometry (FCM) is now the most widely used method to determine ploidy levels and genome size of plants. To get reliable estimates and allow reproducibility of measurements, the methodology should be standardized and follow the best practices in the field. In this article, we discuss instrument calibration and quality control and various instrument and acquisition settings (parameters, flow rate, number of events, scales, use of discriminators, peak positions). These settings must be decided before measurements because they determine the amount and quality of the data and thus influence all downstream analyses. We describe the two main approaches to raw data analysis (gating and histogram modeling), and we discuss their advantages and disadvantages. Finally, we provide a summary of best practice recommendations for data acquisition and raw data analysis in plant FCM.
 
- 650 _2
 - $a průtoková cytometrie $x metody $7 D005434
 
- 650 _2
 - $a reprodukovatelnost výsledků $7 D015203
 
- 650 _2
 - $a kalibrace $7 D002138
 
- 650 12
 - $a ploidie $7 D011003
 
- 650 _2
 - $a délka genomu $7 D059646
 
- 655 _2
 - $a časopisecké články $7 D016428
 
- 655 _2
 - $a přehledy $7 D016454
 
- 700 1_
 - $a Smith, Tyler $u Agriculture and Agri-Food Canada (AAFC), Ottawa, Ontario, Canada $1 https://orcid.org/0000000176832653
 
- 700 1_
 - $a Loureiro, João $u Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal $1 https://orcid.org/0000000290683954
 
- 700 1_
 - $a Kron, Paul $u Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada $1 https://orcid.org/0000000217345019
 
- 773 0_
 - $w MED00013935 $t Cytometry. Part A $x 1552-4930 $g Roč. 103, č. 12 (2023), s. 953-966
 
- 856 41
 - $u https://pubmed.ncbi.nlm.nih.gov/37807676 $y Pubmed
 
- 910 __
 - $a ABA008 $b sig $c sign $y - $z 0
 
- 990 __
 - $a 20240109 $b ABA008
 
- 991 __
 - $a 20240213093157 $b ABA008
 
- 999 __
 - $a ok $b bmc $g 2049228 $s 1210129
 
- BAS __
 - $a 3
 
- BAS __
 - $a PreBMC-MEDLINE
 
- BMC __
 - $a 2023 $b 103 $c 12 $d 953-966 $e 20231008 $i 1552-4930 $m Cytometry. Part A $n Cytometry A $x MED00013935
 
- GRA __
 - $a FCT/UIDB/04004/2020 $p Centro de Ecologia Funcional
 
- GRA __
 - $a RGPIN-2020-05652 $p Natural Sciences and Engineering Research Council of Canada
 
- GRA __
 - $a CENTRO-01-0145-FEDER-000020 $p Programa Operacional Regional do Centro
 
- LZP __
 - $a Pubmed-20240109