-
Je něco špatně v tomto záznamu ?
A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression
M. Chrudinová, NS. Kirk, A. Chuard, H. Venugopal, F. Zhang, M. Lubos, V. Gelfanov, T. Páníková, L. Žáková, J. Cutone, M. Mojares, R. DiMarchi, J. Jiráček, E. Altindis
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
R01 DK132674
NIDDK NIH HHS - United States
NLK
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
PubMed Central
od 2012
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2012
- MeSH
- elektronová kryomikroskopie MeSH
- exprese genu MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosforylace MeSH
- insulinu podobný růstový faktor I * genetika metabolismus MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- myši MeSH
- protein - isoformy metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- receptor IGF typ 1 * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
Boston College Biology Department Chestnut Hill MA USA
Department of Chemistry Indiana University Bloomington IN USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Novo Nordisk Indianapolis IN USA
Ramaciotti Centre for Cryo Electron Microscopy Monash University Clayton VIC Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007310
- 003
- CZ-PrNML
- 005
- 20240423155851.0
- 007
- ta
- 008
- 240412e20240103gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.molmet.2023.101863 $2 doi
- 035 __
- $a (PubMed)38182007
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Chrudinová, Martina $u Boston College Biology Department, Chestnut Hill, MA, USA
- 245 12
- $a A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression / $c M. Chrudinová, NS. Kirk, A. Chuard, H. Venugopal, F. Zhang, M. Lubos, V. Gelfanov, T. Páníková, L. Žáková, J. Cutone, M. Mojares, R. DiMarchi, J. Jiráček, E. Altindis
- 520 9_
- $a OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a myši $7 D051379
- 650 12
- $a receptor IGF typ 1 $x genetika $x metabolismus $7 D017526
- 650 12
- $a insulinu podobný růstový faktor I $x genetika $x metabolismus $7 D007334
- 650 _2
- $a fosforylace $7 D010766
- 650 _2
- $a protoonkogenní proteiny c-akt $x metabolismus $7 D051057
- 650 _2
- $a fosfatidylinositol-3-kinasy $x metabolismus $7 D019869
- 650 _2
- $a elektronová kryomikroskopie $7 D020285
- 650 _2
- $a inzulin $x metabolismus $7 D007328
- 650 _2
- $a protein - isoformy $x metabolismus $7 D020033
- 650 _2
- $a exprese genu $7 D015870
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kirk, Nicholas S $u WEHI, Parkville, VIC, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- 700 1_
- $a Chuard, Aurelien $u Boston College Biology Department, Chestnut Hill, MA, USA
- 700 1_
- $a Venugopal, Hari $u Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
- 700 1_
- $a Zhang, Fa $u Department of Chemistry, Indiana University, Bloomington, IN, USA
- 700 1_
- $a Lubos, Marta $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Gelfanov, Vasily $u Novo Nordisk, Indianapolis, IN, USA
- 700 1_
- $a Páníková, Terezie $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Žáková, Lenka $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Cutone, Julianne $u Boston College Biology Department, Chestnut Hill, MA, USA
- 700 1_
- $a Mojares, Matthew $u Boston College Biology Department, Chestnut Hill, MA, USA
- 700 1_
- $a DiMarchi, Richard $u Department of Chemistry, Indiana University, Bloomington, IN, USA
- 700 1_
- $a Jiráček, Jiří $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Altindis, Emrah $u Boston College Biology Department, Chestnut Hill, MA, USA. Electronic address: altindis@bc.edu
- 773 0_
- $w MED00190571 $t Molecular metabolism $x 2212-8778 $g Roč. 80 (20240103), s. 101863
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38182007 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155848 $b ABA008
- 999 __
- $a ok $b bmc $g 2081347 $s 1217077
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 80 $c - $d 101863 $e 20240103 $i 2212-8778 $m Molecular metabolism $n Mol Metab $x MED00190571
- GRA __
- $a R01 DK132674 $p NIDDK NIH HHS $2 United States
- LZP __
- $a Pubmed-20240412