-
Je něco špatně v tomto záznamu ?
Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor
F. Baselious, S. Hilscher, D. Robaa, C. Barinka, M. Schutkowski, W. Sippl
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
469954457, 471614207
Deutsche Forschungsgemeinschaft
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
38279359
DOI
10.3390/ijms25021358
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- inhibitory histondeacetylas farmakologie chemie MeSH
- katalytická doména MeSH
- racionální návrh léčiv MeSH
- simulace molekulární dynamiky * MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 μM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 μM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007538
- 003
- CZ-PrNML
- 005
- 20240423160038.0
- 007
- ta
- 008
- 240412s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms25021358 $2 doi
- 035 __
- $a (PubMed)38279359
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Baselious, Fady $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0000000332428514
- 245 10
- $a Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor / $c F. Baselious, S. Hilscher, D. Robaa, C. Barinka, M. Schutkowski, W. Sippl
- 520 9_
- $a HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 μM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 μM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a katalytická doména $7 D020134
- 650 12
- $a chemické modely $7 D008956
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a inhibitory histondeacetylas $x farmakologie $x chemie $7 D056572
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hilscher, Sebastian $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0009000306117365
- 700 1_
- $a Robaa, Dina $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- 700 1_
- $a Barinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic $1 https://orcid.org/0000000327513060 $7 xx0126049
- 700 1_
- $a Schutkowski, Mike $u Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- 700 1_
- $a Sippl, Wolfgang $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0000000259859261 $7 ntk20201064927
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 25, č. 2 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38279359 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423160035 $b ABA008
- 999 __
- $a ok $b bmc $g 2081502 $s 1217305
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 25 $c 2 $e 20240122 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 469954457, 471614207 $p Deutsche Forschungsgemeinschaft
- LZP __
- $a Pubmed-20240412