• Je něco špatně v tomto záznamu ?

Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor

F. Baselious, S. Hilscher, D. Robaa, C. Barinka, M. Schutkowski, W. Sippl

. 2024 ; 25 (2) : . [pub] 20240122

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007538

Grantová podpora
469954457, 471614207 Deutsche Forschungsgemeinschaft

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 μM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 μM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007538
003      
CZ-PrNML
005      
20240423160038.0
007      
ta
008      
240412s2024 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms25021358 $2 doi
035    __
$a (PubMed)38279359
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Baselious, Fady $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0000000332428514
245    10
$a Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor / $c F. Baselious, S. Hilscher, D. Robaa, C. Barinka, M. Schutkowski, W. Sippl
520    9_
$a HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 μM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 μM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
650    _2
$a simulace molekulového dockingu $7 D062105
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a katalytická doména $7 D020134
650    12
$a chemické modely $7 D008956
650    _2
$a racionální návrh léčiv $7 D015195
650    _2
$a inhibitory histondeacetylas $x farmakologie $x chemie $7 D056572
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hilscher, Sebastian $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0009000306117365
700    1_
$a Robaa, Dina $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
700    1_
$a Barinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic $1 https://orcid.org/0000000327513060 $7 xx0126049
700    1_
$a Schutkowski, Mike $u Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
700    1_
$a Sippl, Wolfgang $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany $1 https://orcid.org/0000000259859261 $7 ntk20201064927
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 25, č. 2 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38279359 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423160035 $b ABA008
999    __
$a ok $b bmc $g 2081502 $s 1217305
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 25 $c 2 $e 20240122 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a 469954457, 471614207 $p Deutsche Forschungsgemeinschaft
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...